netG.load_state_dict( torch.load("./model/netG_streetview.pth", map_location=lambda storage, location: storage)["state_dict"])
时间: 2024-06-04 10:06:59 浏览: 196
这段代码是用来加载已经训练好的模型参数的。具体来说,它使用 `torch.load()` 函数加载了保存在文件 `./model/netG_streetview.pth` 中的模型参数,然后将这些参数加载到预定义的 `netG` 模型中。其中的 `map_location` 参数用于指定将模型加载到哪个设备上。如果写成 `map_location='cpu'`,则表示将模型加载到 CPU 上;如果写成 `map_location=torch.device('cuda:0')`,则表示将模型加载到 GPU 上的第 0 个设备上。最后,通过 `["state_dict"]` 的方式获取字典中存储的模型参数。
相关问题
etg, netd = NetG(opt), NetD(opt) map_location = lambda storage, loc: storage if opt.netd_path: print(opt.netd_path) netd.load_state_dict(t.load(opt.netd_path, map_location=map_location)) if opt.netg_path: netg.load_state_dict(t.load(opt.netg_path, map_location=map_location)) netd.to(device) netg.to(device) # 定义优化器和损失 optimizer_g = t.optim.Adam(netg.parameters(), opt.lr1, betas=(opt.beta1, 0.999)) optimizer_d = t.optim.Adam(netd.parameters(), opt.lr2, betas=(opt.beta1, 0.999)) criterion = t.nn.BCELoss().to(device) # 真图片label为1,假图片label为0 # noises为生成网络的输入 true_labels = t.ones(opt.batch_size).to(device) fake_labels = t.zeros(opt.batch_size).to(device) fix_noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device) noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device) errord_meter = AverageValueMeter() errorg_meter = AverageValueMeter() epochs = range(opt.max_epoch)的含义
这段代码是对生成对抗网络中的生成器和判别器进行初始化,并设置优化器、损失函数以及真实和虚假图片的标签等。
1. NetG和NetD是两个神经网络,分别代表生成器和判别器。通过传入opt参数,初始化两个网络,并在GPU或CPU上进行训练。
2. 如果opt.netd_path和opt.netg_path不为空,则加载之前训练好的网络参数。
3. 定义Adam优化器和二元交叉熵损失函数,并将它们移动到GPU或CPU上。
4. 定义真实和虚假图片的标签,以及用于生成网络的输入噪声。
5. 定义AverageValueMeter类的实例,用于计算每个epoch的平均损失值。
6. 定义训练的epoch数,用于控制训练的次数。
最终将这些参数和实例返回,用于后续的GAN训练。
def generate(**kwargs): """ 随机生成动漫头像,并根据netd的分数选择较好的 """ for k_, v_ in kwargs.items(): setattr(opt, k_, v_) device=t.device('cuda') if opt.gpu else t.device('cpu') netg, netd = NetG(opt).eval(), NetD(opt).eval() noises = t.randn(opt.gen_search_num, opt.nz, 1, 1).normal_(opt.gen_mean, opt.gen_std) noises = noises.to(device) map_location = lambda storage, loc: storage netd.load_state_dict(t.load(opt.netd_path, map_location=map_location)) netg.load_state_dict(t.load(opt.netg_path, map_location=map_location)) netd.to(device) netg.to(device) # 生成图片,并计算图片在判别器的分数 fake_img = netg(noises) scores = netd(fake_img).detach() # 挑选最好的某几张 indexs = scores.topk(opt.gen_num)[1] result = [] for ii in indexs: result.append(fake_img.data[ii]) # 保存图片 tv.utils.save_image(t.stack(result), opt.gen_img, normalize=True, value_range=(-1, 1))解释一下
这段代码实现了动漫头像的生成,并选择分数较高的图片作为结果保存。具体来说,它的输入参数`kwargs`包含了一系列设置,通过`setattr(opt, k_, v_)`将其设置到类`opt`的属性中。然后,根据是否使用GPU选择运行设备。
接下来,定义了生成器`netg`和判别器`netd`,并将其加载预训练模型。`noises`是一个大小为`(opt.gen_search_num, opt.nz, 1, 1)`的正态分布噪声,并通过设置`opt.gen_mean`和`opt.gen_std`来控制其均值和标准差。`noises`被移动到选定的设备上。然后,生成器和判别器都被移动到选定的设备上。
接下来,使用生成器`netg`生成一批图片,使用判别器`netd`计算这些图片的分数,并将分数保存在`scores`中。接着,从`scores`中挑选得分最高的`opt.gen_num`张图片,并将它们保存在`result`中。最后,使用`tv.utils.save_image`将`result`中的图片保存在指定的路径下。
阅读全文