if opt.vis and ii % opt.plot_every == opt.plot_every - 1: ## 可视化 if os.path.exists(opt.debug_file): ipdb.set_trace() fix_fake_imgs = netg(fix_noises) vis.images(fix_fake_imgs.detach().cpu().numpy()[:64] * 0.5 + 0.5, win='fixfake') vis.images(real_img.data.cpu().numpy()[:64] * 0.5 + 0.5, win='real') vis.plot('errord', errord_meter.value()[0]) vis.plot('errorg', errorg_meter.value()[0]) if (epoch + 1) % opt.save_every == 0: # 保存模型、图片 tv.utils.save_image(fix_fake_imgs.data[:64], '%s/%s.png' % (opt.save_path, epoch), normalize=True, value_range=(-1, 1)) t.save(netd.state_dict(), 'checkpoints/netd_%s.pth' % epoch) t.save(netg.state_dict(), 'checkpoints/netg_%s.pth' % epoch) errord_meter.reset() errorg_meter.reset()的含义
时间: 2024-02-14 20:04:45 浏览: 169
robot.rar_SerialLink/plot3d_matlab arte_matlab机器人工具箱_机器人工具箱_机器人建
5星 · 资源好评率100%
这段代码主要是用于可视化和保存模型、图片。如果设置了可视化(opt.vis=True),则在训练过程中每隔opt.plot_every个batch就会将生成器生成的64张固定噪声对应的假图片和真实图片可视化展示出来,同时将判别器的误差和生成器的误差可视化展示出来。如果可视化时出现问题,可以通过设置opt.debug_file来进入debug模式进行调试。如果到达每opt.save_every个epoch,则会保存生成器和判别器的权重参数以及生成的假图片到指定的路径中。其中,errord_meter和errorg_meter分别用于记录判别器和生成器的误差;netd和netg分别是判别器和生成器的网络模型。
阅读全文