帮我解决以下错误Traceback (most recent call last): File "train.py", line 41, in <module> loss = model.loss_fn(true_y, pred_y, input_mask) File "/home/22wd/pretrained_bert_models/REL/model.py", line 104, in loss_fn calc_loss(pred_obj_head, true_obj_head, mask) + \ File "/home/22wd/pretrained_bert_models/REL/model.py", line 88, in calc_loss weight = torch.where(true > 0, torch.tensor(CLS_WEIGHT_COEF[1]), torch.tensor(CLS_WEIGHT_COEF[0]) ) # 对0降权 RuntimeError: Expected condition, x and y to be on the same device, but condition is on cuda:0 and x and y are on cpu and cpu respectively
时间: 2024-03-09 11:45:37 浏览: 140
这个错误是由于你的条件张量 "true > 0" 在 GPU 上,而其他张量 "torch.tensor(CLS_WEIGHT_COEF[1])" 和 "torch.tensor(CLS_WEIGHT_COEF[0])" 在 CPU 上。为了解决这个问题,你需要将条件张量移动到 CPU 上,可以使用 "true.cpu()" 来移动它。你可以修改你的代码如下:
```python
weight = torch.where(true.cpu() > 0, torch.tensor(CLS_WEIGHT_COEF[1]), torch.tensor(CLS_WEIGHT_COEF[0]))
```
这样就可以解决这个错误了。
相关问题
帮我解决以下错误Traceback (most recent call last): File "train.py", line 42, in <module> loss = model.loss_fn(true_y, pred_y, input_mask) File "/home/22wd/pretrained_bert_models/REL/model.py", line 94, in loss_fn calc_loss(pred_obj_head, true_obj_head, mask) + \ File "/home/22wd/pretrained_bert_models/REL/model.py", line 82, in calc_loss weight = torch.where(true > 0, torch.tensor(CLS_WEIGHT_COEF[1]), torch.tensor(CLS_WEIGHT_COEF[0])) RuntimeError: Expected condition, x and y to be on the same device, but condition is on cuda:0 and x and y are on cpu and cpu respectively
这个错误是因为你的条件参数在 GPU 上,而其它参数在 CPU 上。你需要将条件参数也移到 GPU 上,可以使用 `to()` 方法将其转移到 GPU 上,例如:
```
condition = condition.to(device)
```
其中,`device` 是你的模型所在的设备,可以是 `"cuda:0"` 或者 `"cpu"`。
Traceback (most recent call last): File "E:/403/myworld/VGAE/trainTest.py", line 116, in <module> train(model, optimizer, dataBase, device) File "E:/403/myworld/VGAE/trainTest.py", line 57, in train loss = loss_function(output, labels, mu, logvar, adj) File "E:/403/myworld/VGAE/trainTest.py", line 41, in loss_function recon_loss = criterion(output.view(-1), torch.from_numpy(adj).view(-1))# 重构误差 TypeError: expected np.ndarray (got csr_array)
根据错误提示,`criterion`期望接收一个NumPy数组作为输入,但是您传递给它的是一个`csr_matrix`类型的稀疏矩阵对象`adj`。因此,您需要将`csr_matrix`类型的稀疏矩阵对象转换为NumPy数组。
可以使用`toarray()`方法将稀疏矩阵转换为稠密矩阵,然后使用`.view(-1)`方法将二维矩阵转换为一维向量:
```python
import torch
import dgl
import numpy as np
from scipy.sparse import csr_matrix
with open('graph.bin', 'rb') as f:
graph_data = np.load(f, allow_pickle=True)
graph = dgl.graph((graph_data['edge_index'][0], graph_data['edge_index'][1]))
adj = csr_matrix((graph_data['adjacency_matrix'] != 0).astype(np.float32)) # 转换为csr_matrix类型
model = MyModel()
output = model(graph)
criterion = torch.nn.BCEWithLogitsLoss()
recon_loss = criterion(output.view(-1), torch.from_numpy(adj.toarray()).view(-1)) # 转换为NumPy数组
```
在上述示例代码中,我们使用`csr_matrix`类型将邻接矩阵转换为稀疏矩阵。然后,我们使用`toarray()`方法将稀疏矩阵转换为稠密矩阵,最后使用`.view(-1)`方法将二维矩阵转换为一维向量。最终,我们将转换后的NumPy数组传递给损失函数`criterion`进行计算。
阅读全文