Setting wifi_on has moved from android.provider.Settings.System to android.provider.Settings.Secure, value is unchanged.
时间: 2024-04-22 11:27:47 浏览: 248
这个问题看起来像是一个提示信息,它告诉我们在Android中将wifi_on设置从android.provider.Settings.System移动到了android.provider.Settings.Secure,但是值并没有改变。这个变化可能是因为在Android中,系统设置(system settings)和安全设置(secure settings)是分开的,而且安全性更高的设置需要使用更高的权限才能访问。如果你需要在应用程序中访问这个设置,你可能需要使用更高的权限,并且要注意这个设置在不同版本的Android中可能会有所不同。
相关问题
if self.config.load_type == "INC": # adhoc hist job do not need to join landing merge table try: landing_merge_df = self.spark.read.format(self.config.destination_file_type). \ load(self.config.destination_data_path) # dataframe for updated records df = df.drop("audit_batch_id", "audit_job_id", "audit_src_sys_name", "audit_created_usr", "audit_updated_usr", "audit_created_tmstmp", "audit_updated_tmstmp") # dataframe for newly inserted records new_insert_df = df.join(landing_merge_df, primary_keys_list, "left_anti") self.logger.info(f"new_insert_df count: {new_insert_df.count()}") new_insert_df = DataSink_with_audit(self.spark).add_audit_columns(new_insert_df, param_dict) update_df = df.alias('l').join(landing_merge_df.alias('lm'), on=primary_keys_list, how="inner") update_df = update_df.select("l.*", "lm.audit_batch_id", "lm.audit_job_id", "lm.audit_src_sys_name", "lm.audit_created_usr", "lm.audit_updated_usr", "lm.audit_created_tmstmp", "lm.audit_updated_tmstmp") self.logger.info(f"update_df count : {update_df.count()}") update_df = DataSink_with_audit(self.spark).update_audit_columns(update_df, param_dict) # dataframe for unchanged records unchanged_df = landing_merge_df.join(df, on=primary_keys_list, how="left_anti") self.logger.info(f"unchanged_records_df count : {unchanged_df.count()}") final_df = new_insert_df.union(update_df).union(unchanged_df) print("final_df count : ", final_df.count()) except AnalysisException as e: if e.desc.startswith('Path does not exist'): self.logger.info('landing merge table not exists. will skip join landing merge') final_df = DataSink_with_audit(self.spark).add_audit_columns(df, param_dict) else: self.logger.error(f'unknown error: {e.desc}') raise e else: final_df = DataSink_with_audit(self.spark).add_audit_columns(df, param_dict) return final_df
这是一段Python代码,其中包含一个类方法的实现。该方法根据配置参数的不同,从一个特定的数据路径中将数据加载到一个Spark DataFrame中,并对该数据进行一些操作,最终返回一个具有审计列的DataFrame。如果配置参数是"INC",则会执行一些数据合并的操作,包括添加、更新和未更改的记录,并对这些记录添加审计列。如果配置参数是其他值,则只会添加审计列。
import cv2 import os def resize_image(image_path, width, height): """调整图片大小""" img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) cv2.imwrite(image_path, resized) def extract_frames(video_path, target_path): """提取视频帧并保存封面图""" try: vc = cv2.VideoCapture(video_path) # 读取视频 success, frame = vc.read() # 读取当前帧,success用于判断读取是否成功 count = 0 # 初始化计数器 while success: file_name = os.path.splitext(os.path.basename(video_path))[0] + f'_{count}.jpg' frame_path = os.path.join(target_path, file_name) cv2.imwrite(frame_path, frame) # 将当前帧保存为图片到 frame_path resize_image(frame_path, 2560, 1440) # 调整图片大小 success, frame = vc.read() # 继续读取下一帧 count += 1 # 计数器加1 except Exception as e: print(f"获取视频帧失败: {e}") if __name__ == '__main__': video_folder = 'D:/path/to/videos/1/银二-主井皮带_20230523151417' # 视频文件夹目录 target_path = 'D:/path/to/frames/1' # 帧截图保存路径 if not os.path.exists(target_path): # 如果目标路径不存在原文件夹的话就创建 os.makedirs(target_path) for file_name in os.listdir(video_folder): file_path = os.path.join(video_folder, file_name) if os.path.isfile(file_path) and file_name.endswith('.mp4'): extract_frames(file_path, target_path) print("程序执行完毕!")
这是一段Python代码,主要功能是从指定的视频文件夹中提取视频帧并保存为图片。具体实现过程如下:
1. 引入cv2和os模块。
2. 定义resize_image函数,用于调整图片大小。该函数接收三个参数:图片路径、目标宽度和目标高度。
3. 定义extract_frames函数,用于提取视频帧并保存封面图。该函数接收两个参数:视频路径和目标路径。
4. 在extract_frames函数中,通过cv2.VideoCapture读取视频,并依次读取每一帧进行处理。在读取每一帧时,先生成当前帧的文件名,然后将该帧写入到指定路径下的文件中。
5. 调用resize_image函数,将图片大小调整为指定的宽度和高度。
6. 在主函数中,指定视频文件夹路径和目标路径,并循环遍历视频文件夹下的所有mp4格式的视频文件。对于每一个mp4格式的视频文件,调用extract_frames函数提取视频帧并保存为图片。
7. 输出程序执行完毕的提示信息。
需要注意的是,该代码需要安装OpenCV库才能正常运行。
阅读全文