基于pytorch写一个多对多预测代码,数据集名称为data.csv,前四列为特征,其余列为标签,前800行为训练集其余为测试集,将预测值与真实值输出到excel工作表中
时间: 2023-02-16 09:59:05 浏览: 116
在这里给出一个示例代码,它实现了你所描述的功能:
```python
import pandas as pd
import torch
import torch.nn as nn
# 读入数据
df = pd.read_csv("data.csv")
train_df = df.iloc[:800, :]
test_df = df.iloc[800:, :]
# 特征和标签
X_train = train_df.iloc[:, :4]
y_train = train_df.iloc[:, 4:]
X_test = test_df.iloc[:, :4]
y_test = test_df.iloc[:, 4:]
# 转换为tensor
X_train = torch.tensor(X_train.values).float()
y_train = torch.tensor(y_train.values).float()
X_test = torch.tensor(X_test.values).float()
y_test = torch.tensor(y_test.values).float()
# 定义模型
class MultiOutputModel(nn.Module):
def __init__(self):
super(MultiOutputModel, self).__init__()
self.linear = nn.Linear(4, y_train.shape[1])
def forward(self, x):
out = self.linear(x)
return out
model = MultiOutputModel()
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 训练
for epoch in range(1000):
# 前向传播
y_pred = model(X_train)
# 计算损失
loss = criterion(y_pred, y_train)
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
# 清空梯度
optimizer.zero_grad()
# 测试
with torch.no_grad():
y_test_pred = model(X_test)
# 将预测值和真实值写入excel
result_df = pd.DataFrame({"y_test": y_test.numpy().flatten(), "y_test_pred": y_test_pred.numpy().flatten()})
result_df.to_excel("result.xlsx", index=False)
```
请注意,这只是一个示例代码,它可能需要根据你
阅读全文