threshold = 30 _,thresh = cv2.threshold(diff,threshold,255,cv2.THRESH_BINARY)代码的含义以及源代码讲解
时间: 2023-08-03 07:23:05 浏览: 140
这段代码的含义是通过 OpenCV 库中的 `threshold` 函数来对输入图像 `diff` 进行二值化处理,将小于阈值 `threshold` 的像素点赋值为 0,大于等于阈值的像素点赋值为 255。
具体来说,`cv2.threshold` 函数的参数含义如下:
- `diff`:输入图像,可以是灰度图或者彩色图像;
- `threshold`:阈值,如代码中的 30;
- `255`:当像素值大于等于阈值时,所赋的像素值;
- `cv2.THRESH_BINARY`:二值化类型,这里是二值化阈值化类型,即将小于阈值的像素点赋值为 0,大于等于阈值的像素点赋值为 255。
源代码讲解:
```python
threshold = 30
_, thresh = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)
```
首先定义了阈值 `threshold` 为 30,然后调用 `cv2.threshold` 函数将 `diff` 二值化处理,并将结果保存在 `thresh` 变量中。由于在这里并不需要返回阈值,因此使用了 `_` 占位符来代替。最后,`thresh` 变量即为二值化后的图像。
相关问题
image = cv2.imread('scan.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if preprocess == "thresh": gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] if preprocess == "blur": gray = cv2.medianBlur(gray, 3) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) text = pytesseract.image_to_string(Image.open(filename),lang='chi_sim') print(text) cv2.imshow("Image", image) cv2.imshow("Output", gray) cv2.waitKey(0)
这段代码主要是用于读取图像、对图像进行预处理并提取文本内容。我会逐步解释代码的功能:
- 首先,使用`cv2.imread()`函数读取名为`scan.jpg`的图像并将其存储在`image`变量中。
- 接下来,使用`cv2.cvtColor()`函数将彩色图像转换为灰度图像,并将结果存储在`gray`变量中。
- 如果`preprocess`变量的值是"thresh",则通过阈值化操作将灰度图像二值化,使用`cv2.threshold()`函数并将结果存储在`gray`变量中。
- 如果`preprocess`变量的值是"blur",则通过中值模糊操作对灰度图像进行模糊处理,使用`cv2.medianBlur()`函数并将结果存储在`gray`变量中。
- 接下来,使用`os.getpid()`函数获取当前进程的ID,并将其作为文件名的一部分,将灰度图像以PNG格式保存到文件中,文件名存储在`filename`变量中。
- 使用`pytesseract.image_to_string()`函数读取图像文件中的文本内容,并将结果存储在`text`变量中。其中,设置参数`lang='chi_sim'`用于指定识别中文字符。
- 最后,使用`cv2.imshow()`函数显示原始图像和预处理后的灰度图像。使用`cv2.waitKey(0)`等待用户按下任意键后关闭图像窗口。
这段代码使用了OpenCV和Tesseract库来进行图像处理和文本识别。
img=cv2.threshold(image,90,255,cv2.THRESH_BINARY) #调整裁剪效果 阈值算法速度优于canny算法 # img = cv2.Canny(image,100,20) # cannyb = cv2.resize(b,None,fx=0.25,fy=0.25) # cv2.imshow('Canny', cannyb) # cv2.waitKey(0) binary_image=img[1] #二值图--具有三通道 # binary_image = img # binary_image=cv2.cvtColor(binary_image,cv2.COLOR_BGR2GRAY) # print(binary_image.shape) #改为单通道 x = binary_image.shape[1] print("宽度x=", x) y=binary_image.shape[0] print("高度y=",y) x_min = 0 y_min = 0 x_max = 0 y_max = 0 count = 0 for r in range(y): if 255 in binary_image[r][:]: if count == 0: y_min = r count += 1 y_max = r
以下是将该Python代码转换为C++代码的实现示例:
```c++
cv::Mat img;
cv::threshold(image, img, 90, 255, cv::THRESH_BINARY);
// cv::Canny(image, img, 100, 200);
// cv::resize(b, cannyb, cv::Size(), 0.25, 0.25);
// cv::imshow("Canny", cannyb);
// cv::waitKey(0);
cv::Mat binary_image = img;
// cv::cvtColor(binary_image, binary_image, cv::COLOR_BGR2GRAY);
// std::cout << binary_image.size() << std::endl;
int x = binary_image.cols;
std::cout << "宽度x=" << x << std::endl;
int y = binary_image.rows;
std::cout << "高度y=" << y << std::endl;
int x_min = 0, y_min = 0, x_max = 0, y_max = 0, count = 0;
for (int r = 0; r < y; r++) {
bool has_object = false;
for (int c = 0; c < binary_image.cols; c++) {
if (binary_image.at<uchar>(r, c) == 255) {
has_object = true;
break;
}
}
if (has_object) {
if (count == 0) {
y_min = r;
}
count++;
y_max = r;
}
}
```
需要注意的是,在C++中使用OpenCV库进行图像处理时,需要使用`cv::Mat`类型来表示图像,并且需要使用`at<uchar>(r, c)`方法来获取图像中指定位置的像素值。此外,在使用`cv::threshold()`函数时,需要将输出结果赋值给一个新的`cv::Mat`对象,而不能直接覆盖原始输入图像。
阅读全文