将上面代码结果用进行可视化并用Python写出来
时间: 2023-06-13 09:07:29 浏览: 93
基于Python从纯文本中提取出人物关系网络,并用Gephi 将生成的网络可视化源码+使用文档+全部资料(优秀项目).zip
以下是将上面代码结果进行可视化的代码:
```python
import matplotlib.pyplot as plt
plt.plot(history.history['loss'])
plt.plot(history.history['accuracy'])
plt.title('Training Loss and Accuracy')
plt.xlabel('Epoch')
plt.legend(['Loss', 'Accuracy'])
plt.show()
```
以下是用Python写出来的完整代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, LSTM, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
# Load the data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Normalize the pixel values
x_train, x_test = x_train / 255.0, x_test / 255.0
# Define the model architecture
inputs = Input(shape=(28, 28))
x = LSTM(128)(inputs)
x = Dropout(0.5)(x)
outputs = Dense(10, activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
# Compile the model
model.compile(loss='sparse_categorical_crossentropy',
optimizer=Adam(learning_rate=0.001),
metrics=['accuracy'])
# Train the model
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
# Visualize the training loss and accuracy
import matplotlib.pyplot as plt
plt.plot(history.history['loss'])
plt.plot(history.history['accuracy'])
plt.title('Training Loss and Accuracy')
plt.xlabel('Epoch')
plt.legend(['Loss', 'Accuracy'])
plt.show()
```
运行上面代码后,可以看到训练过程中每个epoch的loss和accuracy的变化。
阅读全文