用python语言自编程实现逻辑回归算法
时间: 2023-11-10 21:12:22 浏览: 88
好的,下面是用Python语言自编程实现逻辑回归算法的步骤:
步骤1:导入必要的库
```
import numpy as np
import pandas as pd
```
步骤2:定义sigmoid函数
```
def sigmoid(z):
return 1 / (1 + np.exp(-z))
```
步骤3:定义代价函数
```
def costFunction(X, y, theta):
m = len(y)
h = sigmoid(X @ theta)
J = (-1/m) * (y.T @ np.log(h) + (1 - y).T @ np.log(1 - h))
return J
```
步骤4:定义梯度下降函数
```
def gradientDescent(X, y, theta, alpha, num_iters):
m = len(y)
J_history = np.zeros((num_iters, 1))
for i in range(num_iters):
h = sigmoid(X @ theta)
theta = theta - (alpha/m) * (X.T @ (h - y))
J_history[i] = costFunction(X, y, theta)
return (theta, J_history)
```
步骤5:读取数据并进行预处理
```
data = pd.read_csv('data.csv')
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
X = np.c_[np.ones((X.shape[0],1)), X]
y = y[:, np.newaxis]
theta = np.zeros((X.shape[1], 1))
```
步骤6:运行梯度下降算法
```
alpha = 0.01
num_iters = 1500
theta, J_history = gradientDescent(X, y, theta, alpha, num_iters)
```
最后可以通过J_history查看代价函数的变化情况,也可以对新的数据进行预测。
阅读全文