知识蒸馏python代码
时间: 2024-12-03 09:16:41 浏览: 18
知识蒸馏,也称为模型压缩或迁移学习的一种形式,是指将一个大型、复杂的深度模型(通常被称为教师模型)的知识传授给一个小巧的、效率更高的模型(学生模型)。Python是常用的语言之一,来进行知识蒸馏的实现。
下面是一个简单的使用PyTorch实现知识蒸馏的例子:
```python
import torch
from torch import nn
# 假设我们有预训练的教师网络teacher_net
teacher_net = ... # Teacher Model (Pre-trained)
# 定义学生网络student_net,结构通常简化一些
class StudentNet(nn.Module):
def __init__(self):
super(StudentNet, self).__init__()
self.student_layers = ... # Your student network layers
def forward(self, x):
return self.student_layers(x)
student_net = StudentNet()
# 使用教师网络的输出作为学生的预测,并添加一个温度归一化层
temperature = 10
kd_loss_fn = nn.KLDivLoss(reduction='batchmean') # Knowledge Distillation Loss Function
def kd_loss(student_outs, teacher_outs):
soft_teacher_outs = teacher_outs.softmax(dim=1) / temperature
soft_student_outs = student_outs.softmax(dim=1)
return kd_loss_fn(soft_student_outs, soft_teacher_outs)
# 训练过程
optimizer = torch.optim.Adam(student_net.parameters())
for epoch in range(num_epochs):
# 获取数据
inputs, targets = ...
# 教师网络前向传播并获取logits
teacher_logits = teacher_net(inputs)
# 学生网络前向传播
student_logits = student_net(inputs)
# 计算知识蒸馏损失
loss = kd_loss(student_logits, teacher_logits)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
阅读全文