module my_uart_tx(clk,rst_n,clk_bps,rd_data,rd_en,empty,rs232_tx); input clk; // 100MHz主时钟 input rst_n; //低电平复位信号 input clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点 input[7:0] rd_data; //接收数据寄存器 output rd_en; //接收数据使能 input empty;//fifo空信号 output rs232_tx; // RS232发送数据信号 //--------------------------------------------------------- reg[7:0] tx_data=8'd0; //待发送数据的寄存器 //--------------------------------------------------------- reg tx_en=0; //发送数据使能信号,高有效 reg[3:0] num; reg rd_en=0; reg [2:0] state=3'd0; always@(posedge clk or negedge rst_n) if(!rst_n) state<=3'd0; else case(state) 3'd0://wait if(empty==0) state<=3'd1;//read else state<=3'd0; 3'd1://read_en state<=3'd2; 3'd2://read_data state<=3'd3; 3'd3://send state<=3'd4; 3'd4: if(tx_en==0)//发送完成 state<=3'd0; else state<=3'd4; default:; endcase always@(posedge clk ) if(state==3'd1) rd_en<=1;//读fifo使能 else rd_en<=0; always@(posedge clk or negedge rst_n) if(!rst_n) tx_data<=8'd0; else if(state==3'd3) tx_data<=rd_data;//读fifo数据,把数据存入发送数据寄存器 else tx_data<=tx_data; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin tx_en <= 1'b0; end else if(state==3'd3) begin //接收数据完毕,准备把接收到的数据发回去 tx_en <= 1'b1; //进入发送数据状态中 end else if(num==4'd11) begin //数据发送完成,复位 tx_en <= 1'b0; end end //--------------------------------------------------------- reg rs232_tx_r; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin num <= 4'd0; rs232_tx_r <= 1'b1; end else if(tx_en) begin if(clk_bps) begin num <= num+1'b1; case (num) 4'd0: rs232_tx_r <= 1'b0; //发送起始位 4'd1: rs232_tx_r <= tx_data[0]; //发送bit0 4'd2: rs232_tx_r <= tx_data[1]; //发送bit1 4'd3: rs232_tx_r <= tx_data[2]; //发送bit2 4'd4: rs232_tx_r <= tx_data[3]; //发送bit3 4'd5: rs232_tx_r <= tx_data[4]; //发送bit4 4'd6: rs232_tx_r <= tx_data[5]; //发送bit5 4'd7: rs232_tx_r <= tx_data[6];

时间: 2023-10-30 11:06:11 浏览: 45
这段代码是一个 Verilog 代码模块,实现了一个串口发送数据的功能。其中,输入包括时钟信号 clk、低电平复位信号 rst_n、波特率时钟信号 clk_bps、接收数据寄存器 rd_data、接收数据使能信号 rd_en、FIFO 空信号 empty,输出包括发送数据使能信号 tx_en 和 RS232 发送数据信号 rs232_tx。模块中使用了状态机的方式实现了串口发送数据的过程,包括等待、读取、发送等状态。具体实现过程可以参考代码注释。
相关问题

uart_tx #(.SYS_CLK (50_000_000 ), .BAUDRATE (9600 )) uart_tx_1( .I_rst_n (I_rst_n ), .I_sys_clk (I_clk ), .I_trans_en (S_tx_en ), .I_trans_data (S_tx_data ), .O_trans_en (S_tx_busy ), .O_tx (O_yuyin_tx )

这段代码是一个 Verilog 语言实例化 UART 发送模块的代码。该模块使用了一个名为 uart_tx 的模块,并给出了一些参数:SYS_CLK 表示系统时钟频率为 50MHz,BAUDRATE 表示波特率为 9600bps。然后,该模块实例化了一个名为 uart_tx_1 的模块,并将一些输入和输出信号连接到了该模块的端口上。 具体来说,该模块的输入包括 I_rst_n(重置信号,低电平有效)、I_sys_clk(系统时钟信号)、S_tx_en(发送使能信号)和 S_tx_data(发送数据信号)。输出包括 S_tx_busy(发送忙信号)和 O_yuyin_tx(发送数据输出信号)。该模块的作用是将输入的数据通过 UART 发送出去。

assign tx_data = {8'h61, 8'h69, 8'h6e, 8'h30, 8'h20}; // UART发送模块 uart_tx uart_inst( .clk(clk), .rst(rst), .tx(tx), .data_in(tx_data), .tx_enable(tx_enable) );

这段代码是一个 Verilog HDL 的模块实例化,用于实现 UART 发送功能。下面是对每一行代码的解释: 1. `assign tx_data = {8'h61, 8'h69, 8'h6e, 8'h30, 8'h20};` 这一行代码使用一个 assign 语句,将一个 40 位的信号 tx_data 分配给一个 5 个元素的数组。这个数组是用来存储要发送的数据。具体来说,这里将一个 ASCII 编码字符串 "ain0 " 赋值给 tx_data 数组。注意,8'h61 表示 ASCII 编码字符 'a',8'h69 表示 'i',以此类推。 2. `uart_tx uart_inst( .clk(clk), .rst(rst), .tx(tx), .data_in(tx_data), .tx_enable(tx_enable) );` 这一行代码实例化了一个名为 uart_inst 的 UART 发送模块。这个模块定义在 uart_tx 文件中,需要连接一些输入和输出端口。具体来说,这里将时钟信号 clk、复位信号 rst、发送信号 tx、发送数据信号 data_in 和发送使能信号 tx_enable 都连接到了这个模块的对应端口上。

相关推荐

module uart_tx( input clk, input rst_n, output reg tx, input [7:0] data, input tx_en, output tx_done, input [3:0] DataLen_wire, input isParity_wire, input ParityMode_wire ); reg busy; //线路状态指示,高为线路忙,低为线路空闲 reg send; reg wrsigbuf; reg wrsigrise; reg presult; reg [7:0] cnt; reg [3:0] DataLen = 4'd8; reg isParity = 1'b0; reg paritymode = 1'b0; reg [3:0] dataN_send = 4'd0; //记录当前将要发送的数据(亦即已发送的数据位个数) always @(negedge rst_n) begin //在rst拉低时配置数据位长度、是否使用校验位、奇偶校验 DataLen <= DataLen_wire; isParity <= isParity_wire; paritymode <= ParityMode_wire; end //检测上升沿 always @(posedge clk) begin wrsigbuf <= tx_en; wrsigrise <= (~wrsigbuf) & tx_en; end //发送结束信号 assign tx_done = ~busy; //启动串口发送程序 always @(posedge clk) begin if(wrsigrise && (~busy)) begin //当发送命令有效且线路为空闲时,启动新的数据发送 send <= 1'b1; end else if(cnt==((DataLen+2+isParity)<<4)-4) begin send <= 1'b0; end end //串口发送程序,16个时钟发送一个bit always @(posedge clk or negedge rst_n) begin if(!rst_n) begin tx <= 1'b1; busy <= 1'b0; cnt <= 8'd0; presult <= 1'b0; dataN_send <= 4'd0; end else if(send==1'b1) begin if(cnt==8'd0) begin tx <= 1'b0; //产生起始位 dataN_send <= 4'd0; presult <= paritymode; busy <= 1'b1; cnt <= cnt + 8'd1; end else if(cnt==(dataN_send+1)<<4 && dataN_send<DataLen) begin tx <= data[dataN_send]; //发送数据位 小端 presult <= data[dataN_send]^presult; busy <= 1'b1; cnt <= cnt + 8'd1; dataN_send <= dataN_send+1; end else if(cnt==(DataLen+1)<<4) begin if(isParity)begin tx <= presult; //发送奇偶校验位 busy <= 1'b1; cnt <= cnt + 8'd1; end else begin tx <= 1'b1; //发送停止位 busy <= 1'b1; cnt <= cnt + 8'd1; end end else if(cnt==((DataLen+2)<<4)-4) begin if(isParity) begin tx <= 1'b1; //发送停止位 busy <= 1'b1; cnt <= cnt + 8'd1; end else begin tx <= 1'b1; busy <= 1'b0; cnt <= cnt + 8'd1; end end else if(cnt==((DataLen+3)<<4)-4) begin tx <= 1'b1; busy <= 1'b0; cnt <= cnt + 8'd1; end else begin cnt <= cnt + 8'd1; end end else begin tx <= 1'b1; cnt <= 8'd0; busy <= 1'b0; end end endmodule

最新推荐

recommend-type

verilog实现的UART(带中断、奇偶校验、帧错误)

input wire clk, //50MHz input wire rst_n, input wire rx_in, //串行输入
recommend-type

钢桁架结构振动特性渐变分析工具

钢桁架结构振动特性渐变分析工具
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)