train_dataloader=dict(samples_per_gpu=4, drop_last=True),
时间: 2024-05-31 11:10:47 浏览: 125
这段代码是在设置训练数据装载器(train dataloader)时使用的。其中,`samples_per_gpu`表示每个GPU处理的样本数,这里设置为4。`drop_last`表示当数据集样本数不能被batch size整除时,是否舍弃最后一个batch,这里设置为True表示舍弃。具体而言,如果设置为False,则最后一个batch的样本数可能小于batch size,这会导致内存浪费和训练效果下降。
相关问题
data = dict( videos_per_gpu=8, workers_per_gpu=2, val_dataloader=dict( videos_per_gpu=1, workers_per_gpu=1 ), test_dataloader=dict( videos_per_gpu=1, workers_per_gpu=1 ), train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_root, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix=data_root_val, pipeline=test_pipeline)) evaluation = dict( interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'])
这段代码是一个字典,定义了数据集的一些参数和评估的一些参数。其中,数据集的参数包括:
- 每个GPU上的视频数量(videos_per_gpu)
- 每个GPU上的工作进程数量(workers_per_gpu)
- 验证集数据加载器的参数,包括每个GPU上的视频数量和工作进程数量
- 测试集数据加载器的参数,包括每个GPU上的视频数量和工作进程数量
- 训练集的类型(type)、注释文件(ann_file_train)、数据前缀(data_prefix)和数据处理管道(pipeline)
- 验证集的类型(type)、注释文件(ann_file_val)、数据前缀(data_prefix_val)和数据处理管道(pipeline)
- 测试集的类型(type)、注释文件(ann_file_test)、数据前缀(data_prefix_val)和数据处理管道(pipeline)
评估参数包括:
- 评估间隔(interval)
- 评估指标列表(metrics),包括top_k_accuracy和mean_class_accuracy。
train_dataloader = data.DataLoader( train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True, drop_last=True ) valid_dataloader = data.DataLoader( valid_dataset, batch_size=args.n_samples, num_workers=args.num_workers, shuffle=False, drop_last=False ) print('Training images:', len(train_dataset), '/', 'Validating images:', len(valid_dataset))
这段代码创建了训练集和验证集的数据加载器,并打印了训练集和验证集的图像数量。
首先,使用 `data.DataLoader()` 函数创建了一个名为 `train_dataloader` 的训练集数据加载器。该加载器接受以下参数:
- `train_dataset`:训练集的实例,即之前创建的 `train_dataset`。
- `batch_size`:每个批次中的样本数量,由命令行参数 `args.batch_size` 指定。
- `num_workers`:用于数据加载的线程数,由命令行参数 `args.num_workers` 指定。
- `shuffle`:是否对数据进行随机洗牌,这里设置为 `True`,表示训练集在每个 epoch 之前会被打乱顺序。
- `drop_last`:如果数据集大小不能被批次大小整除,是否丢弃最后一个不完整的批次,这里设置为 `True`,表示如果最后一个批次不满足批次大小,则会被丢弃。
类似地,使用 `data.DataLoader()` 函数创建了一个名为 `valid_dataloader` 的验证集数据加载器。参数设置与训练集数据加载器类似,但是批次大小由命令行参数 `args.n_samples` 指定。
最后,代码打印了训练集和验证集的图像数量,分别使用 `len(train_dataset)` 和 `len(valid_dataset)` 获取。这样可以在控制台上看到训练集和验证集中的图像数量。
总结起来,这段代码创建了训练集和验证集的数据加载器,并打印了它们的图像数量。数据加载器将在训练和验证模型时用于按批次加载数据。
阅读全文