num_pc = 1; while H/sum(lamda) < 0.9 num_pc = num_pc + 1; H = H - p(num_pc)*log2(p(num_pc)); end错误改正

时间: 2024-05-13 12:14:37 浏览: 68
根据代码,可能有两个错误需要进行修改: 1. 变量名错误:代码中使用了 `lamda`,而可能应该是 `lambda`。 2. 变量未定义:在代码中,变量 `p` 未被定义,可能需要在代码前面添加一些对 `p` 的定义。 改正后的代码如下: ``` num_pc = 1; while H/sum(lambda) < 0.9 num_pc = num_pc + 1; H = H - p(num_pc)*log2(p(num_pc)); end ``` 请注意,这只是假设 `lambda` 和 `p` 变量在代码其他部分已经正确定义的情况下进行的修改。如果这些变量未被正确定义,您需要在代码中添加对它们的定义。
相关问题

num_pc = 1; while H/sum(lamda) < 0.9 num_pc = num_pc + 1; H = H - p(num_pc)*log2(p(num_pc)); end

这段代码是用来计算主成分个数的。其中H代表信号的熵,lamda是特征值,p是每个特征值占总特征值的比例。 首先,将主成分个数num_pc初始化为1。然后,通过计算特征值的和sum(lamda)与信号熵H之间的比值,判断当前的主成分个数是否能够解释信号的90%以上的方差。如果不能,则将主成分个数加1,并重新计算信号熵H,直到满足条件为止。 具体的实现逻辑是:计算当前主成分个数下的信号熵H;根据当前主成分个数计算出每个特征值占总特征值的比例p;找到第num_pc个特征值对应的比例p(num_pc),并将其作为当前主成分的贡献;计算新的信号熵H,用于下一轮的判断。如果当前主成分个数下已经能够解释信号的90%以上的方差,则退出循环,返回最终的主成分个数num_pc。

解释: while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:]))

这段代码是 Levenberg-Marquardt 算法的主要迭代过程。while 循环条件是当梯度的范数大于指定的容差 tol 并且迭代次数 k 小于指定的最大迭代次数 iterations 时继续迭代。如果 updateJ 的值为 1,则更新 x_log、y_log 和 J。其中,x_log 和 y_log 分别记录了每次迭代后的参数向量和目标函数值,J 是目标函数的雅可比矩阵,用于计算 Hessian 矩阵 H。H_lm 为加上阻尼因子的 Hessian 矩阵,用于计算搜索方向 pk。pk 是搜索方向,用于计算下一个参数向量 xk1。如果新的目标函数值 fval 小于旧的目标函数值 old_fval,则减小阻尼因子 lamda 并更新参数向量 xk 和目标函数值 old_fval,同时将 updateJ 设为 1。如果新的目标函数值大于等于旧的目标函数值,则增加阻尼因子 lamda 并将 updateJ 设为 0。每次迭代结束后,更新迭代次数 k 和梯度下降的迭代值 grad_log。
阅读全文

相关推荐

import os import cv2 import numpy as np def gabor_kernel(ksize, sigma, gamma, lamda, alpha, psi): """ reference https://en.wikipedia.org/wiki/Gabor_filter """ sigma_x = sigma sigma_y = sigma / gamma ymax = xmax = ksize // 2 # 9//2 xmin, ymin = -xmax, -ymax # print("xmin, ymin,xmin, ymin",xmin, ymin,ymax ,xmax) # X(第一个参数,横轴)的每一列一样, Y(第二个参数,纵轴)的每一行都一样 (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1)) # 生成网格点坐标矩阵 # print("y\n",y) # print("x\n",x) x_alpha = x * np.cos(alpha) + y * np.sin(alpha) y_alpha = -x * np.sin(alpha) + y * np.cos(alpha) print("x_alpha[0][0]", x_alpha[0][0], y_alpha[0][0]) exponent = np.exp(-.5 * (x_alpha ** 2 / sigma_x ** 2 + y_alpha ** 2 / sigma_y ** 2)) # print(exponent[0][0]) # print(x[0],y[0]) kernel = exponent * np.cos(2 * np.pi / lamda * x_alpha + psi) print(kernel) # print(kernel[0][0]) return kernel def gabor_filter(gray_img, ksize, sigma, gamma, lamda, psi): filters = [] for alpha in np.arange(0, np.pi, np.pi / 4): print("alpha", alpha) kern = gabor_kernel(ksize=ksize, sigma=sigma, gamma=gamma, lamda=lamda, alpha=alpha, psi=psi) filters.append(kern) gabor_img = np.zeros(gray_img.shape, dtype=np.uint8) i = 0 for kern in filters: fimg = cv2.filter2D(gray_img, ddepth=cv2.CV_8U, kernel=kern) gabor_img = cv2.max(gabor_img, fimg) i += 1 p = 1.25 gabor_img = (gabor_img - np.min(gabor_img, axis=None)) ** p _max = np.max(gabor_img, axis=None) gabor_img = gabor_img / _max print(gabor_img) gabor_img = gabor_img * 255 return gabor_img.astype(dtype=np.uint8) def main(): dir_path = '7/' files = os.listdir(dir_path) for i in files: print(i) img = cv2.imread(dir_path + "/" + i) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gabor_img = gabor_filter(img_gray, ksize=9, sigma=1, gamma=0.5, lamda=5, psi=-np.pi / 2) Img_Name = "5/gabor/" + str(i) cv2.imwrite(Img_Name, gabor_img) main()

解释:def levenberg_marquardt(fun, grad, jacobian, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the Levenberg-Marquardt algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. jacobian :function function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None # y的最小值 grad_val = None # 梯度的最后一次下降的值 x_log = [] # x的迭代值的数组,n*9,9个参数 y_log = [] # y的迭代值的数组,一维 grad_log = [] # 梯度下降的迭代值的数组 x0 = asarray(x0).flatten() if x0.ndim == 0: x0.shape = (1,) # iterations = len(x0) * 200 k = 1 xk = x0 updateJ = 1 lamda = 0.01 old_fval = fun(x0) gfk = grad(x0) gnorm = np.amax(np.abs(gfk)) J = [None] H = [None] while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

最新推荐

recommend-type

白色大气风格的建筑商业网站模板下载.rar

白色大气风格的建筑商业网站模板下载.rar
recommend-type

面向对象编程语言Objective-C基础语法详解及应用

内容概要:本文详细介绍了面向对象编程语言Objective-C的基础语法,包括其历史背景、特点、环境搭建、基本语法、面向对象编程、高级特性和实际应用。具体涵盖的内容包括Objective-C的历史发展、面向对象编程的核心特性、变量和数据类型、控制结构、函数、数组和字典的使用,以及类、对象、属性和方法的定义与使用。此外,还介绍了高级特性如协议和委托、类别和扩展、ARC、块和GCD。最后,通过示例项目展示了如何在Xcode中创建和调试Objective-C程序,以及如何使用Cocoa和Cocoa Touch框架。 适合人群:具备一定的编程基础,希望学习或深入了解Objective-C编程的开发人员。 使用场景及目标:适用于需要开发macOS和iOS应用的开发者,帮助他们掌握Objective-C的基本语法和高级特性,提高编程效率和代码质量。 其他说明:本文不仅提供了详细的理论讲解,还通过实际代码示例展示了如何在Xcode中创建和调试Objective-C项目,适合初级到中级水平的开发人员学习和参考。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph