F_x_t = (y_gpu * mask + lamda * (F_z_t_D_x_t_1 * mask) + (1 + lamda) * F_z_t_D_x_t_1 * (1 - mask)) / ( 1 + lamda)这是计算什么参数的

时间: 2024-03-11 11:45:26 浏览: 20
这个公式计算的是基于图像的语义分割模型中的 conditional random field (CRF) 的输出结果,其中: - F_x_t 表示在当前迭代步骤 t 下,CRF 模型对于像素 x 的标签预测(即分割结果); - F_z_t_D_x_t_1 表示在当前迭代步骤 t 下,CRF 模型对于像素 x 的标签预测,考虑了像素 x 附近的上下文信息 z,并且假设之前的迭代步骤中已经得到了像素 x 的标签预测 x_1; - y_gpu 是一个由 CNN 模型输出的初始预测结果; - mask 是一个二值化的掩模,表示哪些像素需要在 CRF 中进行调整; - lamda 是一个平衡因子,用于平衡 CRF 的调整效果和初始预测结果的影响。
相关问题

mask_hole = mask_hole | mask3(100,200,x_length/N,N,N,aperture); mask_hole = mask_hole | mask3(150,200,x_length/N,N,N,aperture); mask_hole = mask_hole | mask3(200,200,x_length/N,N,N,aperture); Gaussian_I = f_Gaussian_beams(w0,Gs_z,lamda,x_length,x_length,N,N); E0 = Gaussian_I.*mask_hole; E1 = fftshift(fft2(E0)); 解释下这段代码

这段代码的作用是生成一个高斯光束的复数电场矩阵,并对其进行傅里叶变换。下面逐行解释代码的具体操作: 1. `mask_hole = mask_hole | mask3(100,200,x_length/N,N,N,aperture);` 这行代码的作用是在指定位置生成一个掩膜矩阵,用来表示光束的孔径。`mask3`函数根据传入的参数生成一个矩形孔径掩膜,并将其与`mask_hole`进行按位或操作,将该孔径添加到掩膜矩阵中。 2. `mask_hole = mask_hole | mask3(150,200,x_length/N,N,N,aperture);` 同样的操作,这行代码在不同位置生成另一个矩形孔径掩膜,并将其添加到掩膜矩阵中。 3. `mask_hole = mask_hole | mask3(200,200,x_length/N,N,N,aperture);` 同样的操作,这行代码在另一个位置生成另一个矩形孔径掩膜,并将其添加到掩膜矩阵中。 4. `Gaussian_I = f_Gaussian_beams(w0,Gs_z,lamda,x_length,x_length,N,N);` 这行代码调用了一个名为`f_Gaussian_beams`的函数,传入一些参数来生成一个高斯光束的复数电场矩阵。 5. `E0 = Gaussian_I.*mask_hole;` 这行代码将生成的高斯光束矩阵与掩膜矩阵按元素相乘,得到一个经过孔径控制的光束。 6. `E1 = fftshift(fft2(E0));` 这行代码对经过孔径控制的光束进行二维傅里叶变换,并通过`fftshift`函数对结果进行中心化处理,得到最终的复数电场矩阵`E1`。

解释: while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:]))

这段代码是 Levenberg-Marquardt 算法的主要迭代过程。while 循环条件是当梯度的范数大于指定的容差 tol 并且迭代次数 k 小于指定的最大迭代次数 iterations 时继续迭代。如果 updateJ 的值为 1,则更新 x_log、y_log 和 J。其中,x_log 和 y_log 分别记录了每次迭代后的参数向量和目标函数值,J 是目标函数的雅可比矩阵,用于计算 Hessian 矩阵 H。H_lm 为加上阻尼因子的 Hessian 矩阵,用于计算搜索方向 pk。pk 是搜索方向,用于计算下一个参数向量 xk1。如果新的目标函数值 fval 小于旧的目标函数值 old_fval,则减小阻尼因子 lamda 并更新参数向量 xk 和目标函数值 old_fval,同时将 updateJ 设为 1。如果新的目标函数值大于等于旧的目标函数值,则增加阻尼因子 lamda 并将 updateJ 设为 0。每次迭代结束后,更新迭代次数 k 和梯度下降的迭代值 grad_log。

相关推荐

将这段代码转换为伪代码:def levenberg_marquardt(fun, grad, jacobian, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the Levenberg-Marquardt algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. jacobian :function function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None # y的最小值 grad_val = None # 梯度的最后一次下降的值 x_log = [] # x的迭代值的数组,n*9,9个参数 y_log = [] # y的迭代值的数组,一维 grad_log = [] # 梯度下降的迭代值的数组 x0 = asarray(x0).flatten() if x0.ndim == 0: x0.shape = (1,) # iterations = len(x0) * 200 k = 1 xk = x0 updateJ = 1 lamda = 0.01 old_fval = fun(x0) gfk = grad(x0) gnorm = np.amax(np.abs(gfk)) J = [None] H = [None] while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

最新推荐

recommend-type

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理
recommend-type

sja1311.x86_64.tar.gz

SQLyong 各个版本,免费下载 SQLyog是业界著名的Webyog公司出品的一款简洁高效、功能强大的图形化MySQL数据库管理工具。使用SQLyog可以快速直观地让您从世界的任何角落通过网络来维护远端的MySQL数据库。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。