机器学习分类算法实例,分别写出简单的10个例子python
时间: 2023-08-11 21:17:52 浏览: 133
机器学习算法实例
好的,下面是10个机器学习分类算法的Python实例:
1. 决策树分类
```python
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = DecisionTreeClassifier()
clf.fit(X, y)
```
2. 支持向量机分类
```python
from sklearn.svm import SVC
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = SVC()
clf.fit(X, y)
```
3. K近邻分类
```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = KNeighborsClassifier()
clf.fit(X, y)
```
4. 朴素贝叶斯分类
```python
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = GaussianNB()
clf.fit(X, y)
```
5. 随机森林分类
```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = RandomForestClassifier()
clf.fit(X, y)
```
6. AdaBoost分类
```python
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = AdaBoostClassifier()
clf.fit(X, y)
```
7. 梯度提升分类
```python
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = GradientBoostingClassifier()
clf.fit(X, y)
```
8. 神经网络分类
```python
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = MLPClassifier()
clf.fit(X, y)
```
9. LDA分类
```python
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = LinearDiscriminantAnalysis()
clf.fit(X, y)
```
10. QDA分类
```python
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = QuadraticDiscriminantAnalysis()
clf.fit(X, y)
```
阅读全文