``` a=float(input()) n,b=1,1 while 1/(n**2)>=a: n+=1 b=b+1/(n**2) c=(b*6)**0.5 print("{:.6f}".format(c))```用上面的代码为什么部分错误

时间: 2024-10-24 09:14:57 浏览: 23
DOCX

python2.x基础教程

这个Python代码片段是一个程序,它试图计算满足条件 `1/n^2 >= a` 的最小正整数 `n` 对应序列前两项之和 `b` 的平方根,并将结果四舍五入到小数点后6位。这里的问题在于循环条件 `1/(n**2) >= a` 和变量更新方式。 1. 循环条件可能会导致无限循环:当 `a` 接近0或者小于0时,`1/(n**2)` 总会趋向于无穷大(因为分母趋近于0),这可能导致 `while` 循环永远无法退出,因为它不会达到不成立的情况。 2. 另一个问题是在每次循环中直接累加 `1/(n**2)` 到 `b` 上。由于浮点数运算的精度限制,这种逐次相加的方式可能造成累积误差,特别是当 `a` 非常接近0时,所需的项数非常多,误差可能会积累得相当显著。 正确的做法应该是用一个列表来存储 `1/n^2` 的值,直到它们的和大于 `a`,然后求和并计算平方根。以下是修改后的版本: ```python a = float(input()) n, b = 1, 0 # 将b初始化为0 sequence = [] # 添加项至列表,直到和大于a while True: sequence.append(1 / (n ** 2)) b += 1 / (n ** 2) if b >= a: break n += 1 c = (sum(sequence) * 6) ** 0.5 print("{:.6f}".format(c))
阅读全文

相关推荐

写出下列代码的功能:#include "math.h" #define PI 3.1415926 #define SAMPLENUMBER 128 void InitForFFT(); void MakeWave(); void FFT(); int INPUT[SAMPLENUMBER],DATA[SAMPLENUMBER]; float fWaveR[SAMPLENUMBER],fWaveI[SAMPLENUMBER],w[SAMPLENUMBER]; float sin_tab[SAMPLENUMBER],cos_tab[SAMPLENUMBER]; main() { int i; InitForFFT(); MakeWave(); for ( i=0;i<SAMPLENUMBER;i++ ) { fWaveR[i]=INPUT[i]; fWaveI[i]=0.0f; w[i]=0.0f; } FFT(fWaveR,fWaveI); for ( i=0;i<SAMPLENUMBER;i++ ) { DATA[i]=w[i]; } while ( 1 ); // break point } void FFT(float dataR[SAMPLENUMBER],float dataI[SAMPLENUMBER]) { int x0,x1,x2,x3,x4,x5,x6,xx; int i,j,k,b,p,L; float TR,TI,temp; /********** following code invert sequence ************/ for ( i=0;i<SAMPLENUMBER;i++ ) { x0=x1=x2=x3=x4=x5=x6=0; x0=i&0x01; x1=(i/2)&0x01; x2=(i/4)&0x01; x3=(i/8)&0x01;x4=(i/16)&0x01; x5=(i/32)&0x01; x6=(i/64)&0x01; xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6; dataI[xx]=dataR[i]; } for ( i=0;i<SAMPLENUMBER;i++ ) { dataR[i]=dataI[i]; dataI[i]=0; } /************** following code FFT *******************/ for ( L=1;L<=7;L++ ) { /* for(1) */ b=1; i=L-1; while ( i>0 ) { b=b*2; i--; } /* b= 2^(L-1) */ for ( j=0;j<=b-1;j++ ) /* for (2) */ { p=1; i=7-L; while ( i>0 ) /* p=pow(2,7-L)*j; */ { p=p*2; i--; } p=p*j; for ( k=j;k<128;k=k+2*b ) /* for (3) */ { TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b]; dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p]; dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p]; dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p]; dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p]; } /* END for (3) */ } /* END for (2) */ } /* END for (1) */ for ( i=0;i<SAMPLENUMBER/2;i++ ) { w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]); } } /* END FFT */ void InitForFFT() { int i; for ( i=0;i<SAMPLENUMBER;i++ ) { sin_tab[i]=sin(PI*2*i/SAMPLENUMBER); cos_tab[i]=cos(PI*2*i/SAMPLENUMBER); } } void MakeWave() { int i; for ( i=0;i<SAMPLENUMBER;i++ ) { INPUT[i]=sin(PI*2*i/SAMPLENUMBER*3)*1024; } }

void menu(void); void fun(void(*p)(void)); void fun1(void); void fun2(void); void fun3(void); void fun4(void); struct student{ int id; char name[10]; char gender[5]; float score; }; int count = 0; struct student stu[N]; int main(void) { int input_num; struct student stu[N]; while(1){ menu(); printf("请输入:"); scanf("%d",&input_num); if (1 == input_num || 2 == input_num || 3 == input_num || 4 == input_num || 5 == input_num) switch (input_num) { case 1: fun(fun1); break; case 2: fun(fun2); break; case 3: fun(fun3); break; // case 4: // fun(fun4); case 5: printf("感谢使用\n"); exit(0); break; } else printf("输入错误\n"); } return 0; } void fun1(void) { // char s[5]; printf("请输入学生信息(学号、姓名、性别、成绩\n"); //while(scanf("%s",s) != EOF){ scanf("%d%s%s%f",&stu[count].id,stu[count].name,stu[count].gender,&stu[count].score); count++; // } } void fun2(void) { int i; for(i=0;i<count;i++) printf("学号:%d 姓名:%s 性别:%s 成绩:%f\n",stu[i].id, stu[i].name, stu[i].gender, stu[i].score); } void fun3(void) { int seek_num,i; printf("请输入学号\n"); scanf("%d",&seek_num); for(i=0;i<count;i++) { if(stu[i].id == seek_num) printf("本次搜索学生的信息如下\n学号:%d 姓名:%s 性别:%s 成绩:%f\n",stu[i].id, stu[i].name, stu[i].gender, stu[i].score); } } void fun4(void) { int del_id,i=0; struct student * del_p = stu[N]; struct student * new_p = stu[N]; printf("请输入要删除的学生的学号"); scanf("%d",&del_id); while (i < count) { if(*del_p->id == del_id) { del_p++; i++; } *del_q->id = *del_p->id; *del_q->name = *del_p->name; *del_q->gender = *del_p->gender; *del_q->score = *del_p->score; i++; del_p++; del_q++; } } void fun(void(*p)(void)) { p(); } void menu(void) { printf("|====================================|\n"); printf("| 学 生 管 理 系 统 |\n"); printf("|====================================|\n"); printf("| 1.录入学生信息 |\n"); printf("| 2.查询已录入学生信息 |\n"); printf("| 3.搜索学生信息 |\n"); printf("| 4.删除学生信息 |\n"); printf("| 5.退出程序 |\n"); printf("|====================================|\n"); }为什么我的fun4有问题

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自