将下面代码中的损失函数改成单类识别的损失函数:loss_function = torch.nn.CrossEntropyLoss() optimizer = optim.SGD( net.parameters(), lr=0.001, momentum=0.9
时间: 2024-05-26 14:10:36 浏览: 156
可以将损失函数改为torch.nn.BCEWithLogitsLoss(),同时需要将模型的输出改为一个标量,表示属于该类的概率。代码示例如下:
loss_function = torch.nn.BCEWithLogitsLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
output = net(input)
loss = loss_function(output, target)
相关问题
model = CBOW(word_size, EMDEDDING_DIM) loss_function = nn.NLLLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) #开始训练 for epoch in range(100): total_loss = 0 for context, target in data: context_vector = make_context_vector(context, word_to_ix) log_probs = model(context_vector) total_loss += loss_function(log_probs, torch.tensor([word_to_ix[target]])) optimizer.zero_grad() total_loss.backward() optimizer.step()
这段代码展示了一个 CBOW(Continuous Bag-of-Words)模型的训练过程。首先,通过实例化 CBOW 模型来创建一个模型对象,其中 word_size 是词汇表的大小,EMBEDDING_DIM 是嵌入维度。然后,定义损失函数为负对数似然损失函数(NLLLoss)。接着,创建一个优化器对象,使用随机梯度下降(SGD)算法来更新模型参数,学习率为 0.001。
接下来是训练过程。代码中使用了一个嵌套的循环结构,外层循环控制训练的轮数,内层循环遍历训练数据集中的每个样本。在内层循环中,首先通过 make_context_vector 函数将上下文转换为张量形式(通过 word_to_ix 字典将单词映射为索引),然后将上下文张量作为输入传递给 CBOW 模型,得到预测的目标单词的对数概率。接着计算预测结果与真实目标之间的损失,并累加到 total_loss 中。
在每个样本处理完成后,调用 optimizer.zero_grad() 将梯度置零,然后调用 total_loss.backward() 计算损失对模型参数的梯度,并调用 optimizer.step() 更新模型参数。
重复上述过程,直到完成指定的训练轮数。通过不断迭代优化模型参数,使得模型能够预测目标单词的概率分布接近真实分布,从而实现词嵌入的训练。
def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))
这是一个基于PyTorch框架的CNN模型的训练过程。代码中定义了两个函数:train和test,分别用于训练模型和测试模型。
在训练过程中,首先将模型设置为训练模式,然后遍历训练数据集,对每个batch的数据进行前向传播、反向传播和优化器更新。在每个batch的训练结束后,计算该batch的损失和精度,并将其累加到总的训练损失和训练精度中。
在测试过程中,首先将模型设置为评估模式,然后遍历测试数据集,对每个batch的数据进行前向传播和损失计算。在每个batch的测试结束后,计算该batch的损失和精度,并将其累加到总的测试损失和测试精度中。
最后,将训练过程中的损失和精度以及测试过程中的损失和精度保存到相应的列表中,并打印出当前epoch的训练损失、训练精度、测试损失和测试精度。
整个训练过程会重复执行500个epoch,每个epoch都是一个完整的训练和测试过程。
阅读全文