一元多项式相加顺序表

时间: 2024-06-12 15:10:07 浏览: 7
一元多项式相加可以使用顺序表来实现。具体实现方法是将多项式的系数存储在顺序表的元素中,下标表示该元素对应的指数。相同指数的系数相加即可。 例如,多项式 P(x) = 3x^2 + 2x + 1 可以表示为顺序表 [1, 2, 3],其中下标 0 对应的系数为 1,下标 1 对应的系数为 2,下标 2 对应的系数为 3。 两个多项式相加时,可以先将它们的顺序表按照指数从小到大排序,然后从头开始遍历两个顺序表,将相同指数的系数相加,不同指数的系数直接复制到结果顺序表中即可。
相关问题

顺序表一元多项式指数相加顺序表程序

以下是顺序表一元多项式指数相加的程序: ```c #include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 typedef struct { int coef; // 系数 int expn; // 指数 } ElemType; typedef struct { ElemType data[MAXSIZE]; int length; } SqList; void InitList(SqList *L) { L->length = 0; } void CreateList(SqList *L) { printf("请输入多项式的项数:"); scanf("%d", &L->length); printf("请按照指数递减的顺序输入多项式的系数和指数:\n"); for (int i = 0; i < L->length; i++) { scanf("%d%d", &L->data[i].coef, &L->data[i].expn); } } void AddList(SqList *La, SqList *Lb, SqList *Lc) { int i = 0, j = 0, k = 0; while (i < La->length && j < Lb->length) { if (La->data[i].expn > Lb->data[j].expn) { Lc->data[k++] = La->data[i++]; } else if (La->data[i].expn < Lb->data[j].expn) { Lc->data[k++] = Lb->data[j++]; } else { int sum = La->data[i].coef + Lb->data[j].coef; if (sum != 0) { Lc->data[k].coef = sum; Lc->data[k++].expn = La->data[i].expn; } i++; j++; } } while (i < La->length) { Lc->data[k++] = La->data[i++]; } while (j < Lb->length) { Lc->data[k++] = Lb->data[j++]; } Lc->length = k; } void PrintList(SqList *L) { for (int i = 0; i < L->length; i++) { printf("%dx^%d", L->data[i].coef, L->data[i].expn); if (i != L->length - 1) { printf(" + "); } } printf("\n"); } int main() { SqList La, Lb, Lc; InitList(&La); InitList(&Lb); InitList(&Lc); CreateList(&La); CreateList(&Lb); AddList(&La, &Lb, &Lc); printf("多项式A:"); PrintList(&La); printf("多项式B:"); PrintList(&Lb); printf("多项式C=A+B:"); PrintList(&Lc); return 0; } ```

一元多项式相加c语言

一元多项式相加是指将两个一元多项式相加得到一个新的一元多项式。在C语言中,可以使用单链表来实现一元多项式的存储和相加。具体实现步骤如下: 1. 定义一个结构体来表示一元多项式的每一项,包括系数和指数两个成员变量。 2. 定义一个单链表结构体来存储一元多项式,每个节点存储一项的系数和指数。 3. 编写函数来创建一元多项式,输入时逐项、按顺序输入一元多项式的系数、指数,输入系数为0时表述输入结束。 4. 编写函数来实现一元多项式相加,遍历两个链表,将相同指数的项相加,将结果存储在一个新的链表中。 5. 编写函数来输出一元多项式,遍历链表,按照指数从高到低的顺序输出每一项。 下面是一个简单的C语言实现示例: ``` #include <stdio.h> #include <stdlib.h> // 定义一元多项式项的结构体 typedef struct PolyNode { int coef; // 系数 int expon; // 指数 struct PolyNode *next; } PolyNode, *Polynomial; // 创建一元多项式 Polynomial createPoly() { Polynomial p, rear, t; int c, e; p = (PolyNode *)malloc(sizeof(PolyNode)); p->next = NULL; rear = p; scanf("%d %d", &c, &e); while (c != 0) { t = (PolyNode *)malloc(sizeof(PolyNode)); t->coef = c; t->expon = e; t->next = NULL; rear->next = t; rear = t; scanf("%d %d", &c, &e); } return p; } // 一元多项式相加 Polynomial addPoly(Polynomial p1, Polynomial p2) { Polynomial front, rear, temp; int sum; rear = (PolyNode *)malloc(sizeof(PolyNode)); front = rear; while (p1 && p2) { if (p1->expon > p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } else if (p1->expon < p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } else { sum = p1->coef + p2->coef; if (sum != 0) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = sum; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; } p1 = p1->next; p2 = p2->next; } } while (p1) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } while (p2) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } rear->next = NULL; temp = front; front = front->next; free(temp); return front; } // 输出一元多项式 void printPoly(Polynomial p) { if (!p) { printf("0 0\n"); return; } while (p) { printf("%d %d", p->coef, p->expon); p = p->next; if (p) { printf(" "); } else { printf("\n"); } } } int main() { Polynomial p1, p2, p3; p1 = createPoly(); p2 = createPoly(); p3 = addPoly(p1, p2); printPoly(p3); return 0; } ```

相关推荐

最新推荐

recommend-type

C++数据结构课程设计一元多项式运算

3. **相加函数**:`PolyNode *Plus(PolyNode *A, PolyNode *B)` 实现两个一元多项式相加。两个多项式链表的头指针作为参数传入,遍历两个链表,将相同指数的项合并,系数相加,构建新的链表返回。 4. **相乘函数**...
recommend-type

数据结构课程设计—用链表实现一元多项式计算器

"数据结构课程设计—用链表实现一元多项式计算器" 本课程设计旨在设计一个使用链表实现的一元多项式计算器,以掌握数据结构的应用、算法的编写、C语言的编程和 程序调试的基本方法。通过本课程设计,学生将熟悉掌握...
recommend-type

一元多项式的计算问题----数据结构与算法

在本文中,我们将探讨一元多项式的计算问题,这是数据结构与算法领域的一个经典话题。该问题主要涉及如何高效地处理和运算两个一元多项式。首先,我们需要理解问题的分析和任务定义。 1. 问题分析: - 输入:用户...
recommend-type

一元多项式求和问题的研究与实现

对于频繁的插入和删除操作,单链表的平均时间复杂度为 O(1),而顺序表则需要 O(n) 的时间,这在处理指数范围广泛的多项式时更为有效。 输入方面,程序需要接收多项式的项数、系数和指数,这些数据都是整数,项数和...
recommend-type

一元多项式的计算包括加法,减法等

在实现一元多项式计算时,有两种常见的存储结构:顺序存储和动态存储。顺序存储通常使用数组,将每一项按照指数的降序排列,便于直接访问;而动态存储结构,例如链表,更适合频繁的插入和删除操作,因为它们不需要...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。