matlab实现ID3算法
时间: 2023-09-21 19:06:54 浏览: 35
以下是MATLAB实现ID3算法的基本步骤:
1. 数据预处理:将原始数据进行清理和转换,使其适合用于ID3算法。
2. 计算信息熵:使用信息熵来度量数据集的无序程度。
3. 计算信息增益:计算每个特征对于分类的贡献程度。
4. 选择最优特征:选择信息增益最大的特征作为当前节点的特征。
5. 递归构建决策树:将当前节点的数据集按照选定特征分成不同的子集,并对每个子集递归执行上述步骤,直到构建完整个决策树。
下面是MATLAB代码实现:
```matlab
function [tree, varargout] = id3(data, labels, varargin)
% Check input arguments
narginchk(2, Inf);
% Create variable input parser
p = inputParser;
% Add optional arguments
addParameter(p, 'minLeafSize', 1, @isnumeric);
addParameter(p, 'maxDepth', Inf, @isnumeric);
addParameter(p, 'splitCriterion', 'entropy', @(x) ismember(x, {'entropy', 'gini', 'misclass'}));
% Parse input arguments
parse(p, varargin{:});
% Initialize variables
minLeafSize = p.Results.minLeafSize;
maxDepth = p.Results.maxDepth;
splitCriterion = p.Results.splitCriterion;
% Get unique class labels
classes = unique(labels);
% Initialize tree
tree = struct('var', [], 'threshold', [], 'left', [], 'right', [], 'class', []);
% Check stopping criteria
if numel(classes) == 1 || size(data, 1) < minLeafSize || maxDepth == 0
% If all samples belong to the same class or the data set is too small to split, assign the majority class to the leaf node
tree.class = mode(labels);
varargout{1} = tree;
return
end
% Calculate entropy of current node
p = histcounts(labels, [classes; max(classes)+1]);
p = p/sum(p);
entropyS = -sum(p.*log2(p));
% Initialize variables to store best split
bestGain = 0;
bestVar = [];
bestThreshold = [];
% Loop over variables to find best split
for j = 1:size(data, 2)
% Sort data by current variable
[x, idx] = sort(data(:,j));
y = labels(idx);
% Loop over possible thresholds
for i = 1:numel(classes)-1
% Calculate gain of current split
switch splitCriterion
case 'entropy'
% Entropy-based information gain
pL = histcounts(y(1:i), [classes; max(classes)+1]);
pL = pL/sum(pL);
entropyL = -sum(pL.*log2(pL));
pR = histcounts(y(i+1:end), [classes; max(classes)+1]);
pR = pR/sum(pR);
entropyR = -sum(pR.*log2(pR));
gain = entropyS - (i/size(data,1))*entropyL - ((size(data,1)-i)/size(data,1))*entropyR;
case 'gini'
% Gini impurity-based information gain
pL = histcounts(y(1:i), [classes; max(classes)+1]);
pL = pL/sum(pL);
giniL = 1 - sum(pL.^2);
pR = histcounts(y(i+1:end), [classes; max(classes)+1]);
pR = pR/sum(pR);
giniR = 1 - sum(pR.^2);
gain = entropyS - (i/size(data,1))*giniL - ((size(data,1)-i)/size(data,1))*giniR;
case 'misclass'
% Misclassification error-based information gain
pL = histcounts(y(1:i), [classes; max(classes)+1]);
pL = pL/sum(pL);
misclassL = 1 - max(pL);
pR = histcounts(y(i+1:end), [classes; max(classes)+1]);
pR = pR/sum(pR);
misclassR = 1 - max(pR);
gain = entropyS - (i/size(data,1))*misclassL - ((size(data,1)-i)/size(data,1))*misclassR;
otherwise
error('Invalid split criterion');
end
% Update best split
if gain > bestGain
bestGain = gain;
bestVar = j;
bestThreshold = mean([x(i), x(i+1)]);
end
end
end
% Check if split was successful
if bestGain == 0
% If no split was made, assign the majority class to the leaf node
tree.class = mode(labels);
varargout{1} = tree;
return
end
% Create new tree node
tree.var = bestVar;
tree.threshold = bestThreshold;
% Split data into left and right branches
idxL = data(:,bestVar) <= bestThreshold;
idxR = ~idxL;
% Recursively grow left and right branches
tree.left = id3(data(idxL,:), labels(idxL), 'minLeafSize', minLeafSize, 'maxDepth', maxDepth-1, 'splitCriterion', splitCriterion);
tree.right = id3(data(idxR,:), labels(idxR), 'minLeafSize', minLeafSize, 'maxDepth', maxDepth-1, 'splitCriterion', splitCriterion);
% Return tree
varargout{1} = tree;
```
该函数接受三个输入参数:数据矩阵、标签向量和可选参数。可选参数包括:最小叶子大小、最大深度和分裂标准。输出参数为决策树结构体。
相关推荐















