self.noise_convTranspose = nn.Sequential( # input: [N, 30, 8], output: [N, 900, 64], 30=2x3x5 nn.ConvTranspose1d(8, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(16, 16, kernel_size=11, stride=5, padding=3), nn.ReLU(), nn.ConvTranspose1d(16, 32, kernel_size=5, stride=3, padding=1), nn.ReLU(), nn.ConvTranspose1d(32, 64, kernel_size=6, stride=2, padding=2), nn.ReLU(), ) self.noise_BN = nn.BatchNorm1d(64)
时间: 2023-04-07 12:00:47 浏览: 29
这是一个 PyTorch 中的神经网络模块,用于实现卷积转置操作。它是一个由多个卷积转置层组成的序列,可以通过调用该模块的 forward 方法来进行前向传播计算。具体来说,该模块可以将一个低维度的特征图转换为一个高维度的特征图,从而实现图像的放大或者恢复操作。
相关问题
运行以下Python代码:import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoaderfrom torch.autograd import Variableclass Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return xclass Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return xclass ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): # Train discriminator with real data real_inputs = Variable(inputs) real_labels = Variable(labels) real_labels = real_labels.view(real_labels.size(0), 1) real_inputs = torch.cat((real_inputs, real_labels), 1) real_outputs = self.discriminator(real_inputs) real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size())) # Train discriminator with fake data noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10)) fake_labels = fake_labels.view(fake_labels.size(0), 1) fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1)) fake_inputs = torch.cat((fake_inputs, fake_labels), 1) fake_outputs = self.discriminator(fake_inputs) fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size())) # Backpropagate and update weights for discriminator discriminator_loss = real_loss + fake_loss self.discriminator.zero_grad() discriminator_loss.backward() self.optimizer_D.step() # Train generator noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,
这是一个用 PyTorch 实现的条件 GAN,以下是代码的简要解释:
首先引入 PyTorch 相关的库和模块:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
```
接下来定义生成器(Generator)和判别器(Discriminator)的类:
```
class Generator(nn.Module):
def __init__(self, input_dim, output_dim, num_filters):
super(Generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters),
nn.ReLU(),
nn.Linear(num_filters, num_filters*2),
nn.ReLU(),
nn.Linear(num_filters*2, num_filters*4),
nn.ReLU(),
nn.Linear(num_filters*4, output_dim),
nn.Tanh()
)
def forward(self, x):
x = self.net(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_dim, num_filters):
super(Discriminator, self).__init__()
self.input_dim = input_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters*4),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*4, num_filters*2),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*2, num_filters),
nn.LeakyReLU(0.2),
nn.Linear(num_filters, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.net(x)
return x
```
其中,生成器接受输入维度 input_dim、输出维度 output_dim 和 num_filters 个特征,采用线性层和激活函数构建多层神经网络。判别器接受输入维度 input_dim 和 num_filters 个特征,同样采用线性层和激活函数构建多层神经网络。
最后定义条件 GAN 的类 ConditionalGAN,该类包括生成器、判别器和优化器,以及 train 方法进行训练:
```
class ConditionalGAN(object):
def __init__(self, input_dim, output_dim, num_filters, learning_rate):
self.generator = Generator(input_dim, output_dim, num_filters)
self.discriminator = Discriminator(input_dim+1, num_filters)
self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate)
self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate)
def train(self, data_loader, num_epochs):
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(data_loader):
...
```
其中,ConditionalGAN 类接受输入维度 input_dim、输出维度 output_dim、特征数 num_filters 和学习率 learning_rate。train 方法则接受数据加载器 data_loader 和训练轮数 num_epochs,用于训练模型。
如何用Python画兔子
以下是一个基于PyTorch的多个条件的条件对抗生成网络(Conditional GAN)的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
class Generator(nn.Module):
def __init__(self, input_dim, output_dim, num_filters):
super(Generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters),
nn.ReLU(),
nn.Linear(num_filters, num_filters*2),
nn.ReLU(),
nn.Linear(num_filters*2, num_filters*4),
nn.ReLU(),
nn.Linear(num_filters*4, output_dim),
nn.Tanh()
)
def forward(self, x):
x = self.net(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_dim, num_filters):
super(Discriminator, self).__init__()
self.input_dim = input_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters*4),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*4, num_filters*2),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*2, num_filters),
nn.LeakyReLU(0.2),
nn.Linear(num_filters, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.net(x)
return x
class ConditionalGAN(object):
def __init__(self, input_dim, output_dim, num_filters, learning_rate):
self.generator = Generator(input_dim, output_dim, num_filters)
self.discriminator = Discriminator(input_dim+1, num_filters)
self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate)
self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate)
def train(self, data_loader, num_epochs):
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(data_loader):
# Train discriminator with real data
real_inputs = Variable(inputs)
real_labels = Variable(labels)
real_labels = real_labels.view(real_labels.size(0), 1)
real_inputs = torch.cat((real_inputs, real_labels), 1)
real_outputs = self.discriminator(real_inputs)
real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size()))
# Train discriminator with fake data
noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim))
fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10))
fake_labels = fake_labels.view(fake_labels.size(0), 1)
fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1))
fake_inputs = torch.cat((fake_inputs, fake_labels), 1)
fake_outputs = self.discriminator(fake_inputs)
fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size()))
# Backpropagate and update weights for discriminator
discriminator_loss = real_loss + fake_loss
self.discriminator.zero_grad()
discriminator_loss.backward()
self.optimizer_D.step()
# Train generator
noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim))
fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,
相关推荐
















