self.noise_convTranspose = nn.Sequential( # input: [N, 30, 8], output: [N, 900, 64], 30=2x3x5 nn.ConvTranspose1d(8, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(16, 16, kernel_size=11, stride=5, padding=3), nn.ReLU(), nn.ConvTranspose1d(16, 32, kernel_size=5, stride=3, padding=1), nn.ReLU(), nn.ConvTranspose1d(32, 64, kernel_size=6, stride=2, padding=2), nn.ReLU(), ) self.noise_BN = nn.BatchNorm1d(64)

时间: 2023-04-07 12:00:47 浏览: 29
这是一个 PyTorch 中的神经网络模块,用于实现卷积转置操作。它是一个由多个卷积转置层组成的序列,可以通过调用该模块的 forward 方法来进行前向传播计算。具体来说,该模块可以将一个低维度的特征图转换为一个高维度的特征图,从而实现图像的放大或者恢复操作。
相关问题

运行以下Python代码:import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoaderfrom torch.autograd import Variableclass Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return xclass Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return xclass ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): # Train discriminator with real data real_inputs = Variable(inputs) real_labels = Variable(labels) real_labels = real_labels.view(real_labels.size(0), 1) real_inputs = torch.cat((real_inputs, real_labels), 1) real_outputs = self.discriminator(real_inputs) real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size())) # Train discriminator with fake data noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10)) fake_labels = fake_labels.view(fake_labels.size(0), 1) fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1)) fake_inputs = torch.cat((fake_inputs, fake_labels), 1) fake_outputs = self.discriminator(fake_inputs) fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size())) # Backpropagate and update weights for discriminator discriminator_loss = real_loss + fake_loss self.discriminator.zero_grad() discriminator_loss.backward() self.optimizer_D.step() # Train generator noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,

这是一个用 PyTorch 实现的条件 GAN,以下是代码的简要解释: 首先引入 PyTorch 相关的库和模块: ``` import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from torch.autograd import Variable ``` 接下来定义生成器(Generator)和判别器(Discriminator)的类: ``` class Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return x class Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return x ``` 其中,生成器接受输入维度 input_dim、输出维度 output_dim 和 num_filters 个特征,采用线性层和激活函数构建多层神经网络。判别器接受输入维度 input_dim 和 num_filters 个特征,同样采用线性层和激活函数构建多层神经网络。 最后定义条件 GAN 的类 ConditionalGAN,该类包括生成器、判别器和优化器,以及 train 方法进行训练: ``` class ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): ... ``` 其中,ConditionalGAN 类接受输入维度 input_dim、输出维度 output_dim、特征数 num_filters 和学习率 learning_rate。train 方法则接受数据加载器 data_loader 和训练轮数 num_epochs,用于训练模型。

如何用Python画兔子

以下是一个基于PyTorch的多个条件的条件对抗生成网络(Conditional GAN)的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from torch.autograd import Variable class Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return x class Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return x class ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): # Train discriminator with real data real_inputs = Variable(inputs) real_labels = Variable(labels) real_labels = real_labels.view(real_labels.size(0), 1) real_inputs = torch.cat((real_inputs, real_labels), 1) real_outputs = self.discriminator(real_inputs) real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size())) # Train discriminator with fake data noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10)) fake_labels = fake_labels.view(fake_labels.size(0), 1) fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1)) fake_inputs = torch.cat((fake_inputs, fake_labels), 1) fake_outputs = self.discriminator(fake_inputs) fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size())) # Backpropagate and update weights for discriminator discriminator_loss = real_loss + fake_loss self.discriminator.zero_grad() discriminator_loss.backward() self.optimizer_D.step() # Train generator noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,

相关推荐

下面是一个基于PyTorch实现的DCGAN生成11*11的黑白图像的代码示例: python import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt from torchvision import datasets, transforms # 定义生成器模型 class Generator(nn.Module): def __init__(self, image_size=11, latent_dim=100, hidden_dim=64): super(Generator, self).__init__() self.image_size = image_size self.latent_dim = latent_dim self.hidden_dim = hidden_dim self.main = nn.Sequential( nn.ConvTranspose2d(self.latent_dim, self.hidden_dim * 4, 4, 1, 0, bias=False), nn.BatchNorm2d(self.hidden_dim * 4), nn.ReLU(True), nn.ConvTranspose2d(self.hidden_dim * 4, self.hidden_dim * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(self.hidden_dim * 2), nn.ReLU(True), nn.ConvTranspose2d(self.hidden_dim * 2, self.hidden_dim, 4, 2, 1, bias=False), nn.BatchNorm2d(self.hidden_dim), nn.ReLU(True), nn.ConvTranspose2d(self.hidden_dim, 1, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input.view(-1, self.latent_dim, 1, 1)) # 定义判别器模型 class Discriminator(nn.Module): def __init__(self, image_size=11, hidden_dim=64): super(Discriminator, self).__init__() self.image_size = image_size self.hidden_dim = hidden_dim self.main = nn.Sequential( nn.Conv2d(1, self.hidden_dim, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(self.hidden_dim, self.hidden_dim * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(self.hidden_dim * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(self.hidden_dim * 2, self.hidden_dim * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(self.hidden_dim * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(self.hidden_dim * 4, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input).view(-1, 1) # 定义训练函数 def train(generator, discriminator, dataloader, num_epochs=20, batch_size=64, lr=0.0002, beta1=0.5): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") generator.to(device) discriminator.to(device) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999)) # 定义噪声向量 fixed_noise = torch.randn(64, 100, 1, 1, device=device) # 开始训练 for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 更新判别器模型 discriminator.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size,), 1, device=device) output = discriminator(real_cpu) errD_real = criterion(output, label) noise = torch.randn(b_size, 100, 1, 1, device=device) fake = generator(noise) label.fill_(0) output = discriminator(fake.detach()) errD_fake = criterion(output, label) errD = errD_real + errD_fake errD.backward() optimizerD.step() # 更新生成器模型 generator.zero_grad() label.fill_(1) output = discriminator(fake) errG = criterion(output, label) errG.backward() optimizerG.step() # 打印损失函数和生成的图像 if i % 100 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item())) with torch.no_grad(): fake = generator(fixed_noise).detach().cpu() plt.imshow(fake[0][0], cmap='gray') plt.show() 使用MNIST数据集训练这个模型: python dataset = datasets.MNIST(root='./data', train=True, transform=transforms.Compose([ transforms.Resize(11), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]), download=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=True, num_workers=2) generator = Generator() discriminator = Discriminator() train(generator, discriminator, dataloader) 这个模型的训练过程可能需要几个小时或者更长时间,具体取决于你的计算机性能和数据集大小。
以下是一个简单的 Self-Attention GAN 的代码,包括数据载入、模型、训练和测试代码。 首先,我们需要导入必要的库: python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.utils.data import DataLoader 接下来,我们需要定义一些超参数: python batch_size = 128 image_size = 64 nz = 100 ngf = 64 ndf = 64 num_epochs = 5 lr = 0.0002 beta1 = 0.5 ngpu = 1 然后,我们需要定义数据载入器: python dataset = datasets.ImageFolder(root='data', transform=transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) 接下来,我们需要定义生成器和判别器: python class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(3, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input) 接下来,我们需要初始化生成器和判别器: python device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") netG = Generator().to(device) netD = Discriminator().to(device) if (device.type == 'cuda') and (ngpu > 1): netG = nn.DataParallel(netG, list(range(ngpu))) netD = nn.DataParallel(netD, list(range(ngpu))) 然后,我们需要定义损失函数和优化器: python criterion = nn.BCELoss() fixed_noise = torch.randn(64, nz, 1, 1, device=device) real_label = 1 fake_label = 0 optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) 最后,我们可以开始训练模型: python for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): netD.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, device=device) output = netD(real_cpu).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() netG.zero_grad() label.fill_(real_label) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) if (epoch == 0) and (i == 0): torchvision.utils.save_image(real_cpu, 'real_samples.png', normalize=True) if i == len(dataloader) - 1: with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() torchvision.utils.save_image(fake, 'fake_samples_epoch_%03d.png' % epoch, normalize=True) 测试代码: python import matplotlib.pyplot as plt import numpy as np def show_generated_img_all(): n_images=5 rows = 1 cols = 5 noise = torch.randn(n_images, nz, 1, 1).to(device) fake_images = netG(noise) fig, axes = plt.subplots(rows, cols, figsize=(15,5)) for i in range(rows): for j in range(cols): idx = i*cols+j axes[j].imshow(np.transpose(fake_images[idx].detach().cpu().numpy(), (1,2,0))) axes[j].axis('off') plt.show() show_generated_img_all() 以上就是一个简单的 Self-Attention GAN 的代码。其中,数据载入器可以根据自己的数据集进行修改,超参数也可以根据需要进行调整。
好的,以下是一个简单的PyTorch条件生成对抗网络的代码: import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable # 定义生成器网络 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.fc = nn.Sequential( nn.Linear(latent_dim + num_classes, 128), nn.BatchNorm1d(128), nn.ReLU(True), nn.Linear(128, 256), nn.BatchNorm1d(256), nn.ReLU(True), nn.Linear(256, 512), nn.BatchNorm1d(512), nn.ReLU(True), nn.Linear(512, 784), nn.Tanh() ) def forward(self, noise, labels): gen_input = torch.cat((self.label_emb(labels), noise), -1) out = self.fc(gen_input) out = out.view(out.size(0), 1, 28, 28) return out # 定义判别器网络 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.label_embedding = nn.Embedding(num_classes, num_classes) self.fc = nn.Sequential( nn.Linear(num_classes + 784, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, img, labels): d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1) out = self.fc(d_in) return out # 定义一些超参数 num_epochs = 200 batch_size = 100 learning_rate = 0.0002 # 创建网络实例和优化器 generator = Generator() discriminator = Discriminator() optimizer_G = optim.Adam(generator.parameters(), lr=learning_rate) optimizer_D = optim.Adam(discriminator.parameters(), lr=learning_rate) # 训练循环 for epoch in range(num_epochs): for i, (images, labels) in enumerate(data_loader): # 准备数据 real_images = Variable(images) labels = Variable(labels) real_labels = Variable(torch.ones(batch_size)) fake_labels = Variable(torch.zeros(batch_size)) noise = Variable(torch.randn(batch_size, latent_dim)) # 训练判别器 optimizer_D.zero_grad() real_output = discriminator(real_images, labels) d_loss_real = criterion(real_output, real_labels) d_loss_real.backward() fake_images = generator(noise, labels) fake_output = discriminator(fake_images, labels) d_loss_fake = criterion(fake_output, fake_labels) d_loss_fake.backward() d_loss = d_loss_real + d_loss_fake optimizer_D.step() # 训练生成器 optimizer_G.zero_grad() fake_images = generator(noise, labels) fake_output = discriminator(fake_images, labels) g_loss = criterion(fake_output, real_labels) g_loss.backward() optimizer_G.step() 注意这只是一个简单的示例,实际应用中可能需要进行更多的调整和优化。
好的,以下是一个简单的用GAN生成一维特征的PyTorch代码: python import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 用于生成真实数据的函数,本例使用 y = x^2 + 0.1*noise def get_real_samples(n_samples): x = np.linspace(-1, 1, n_samples) y = x ** 2 + 0.1 * np.random.randn(*x.shape) return x, y # 用于生成噪音数据的函数 def get_noise_samples(n_samples, noise_dim): return np.random.randn(n_samples, noise_dim) # 生成器及其对应的判别器定义 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.sigmoid = nn.Sigmoid() def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x # GAN模型训练 def train_gan(generator, discriminator, gan, n_epochs, n_batch, n_noise): # 损失函数及优化器 criterion = nn.BCELoss() optimizer_g = torch.optim.Adam(generator.parameters(), lr=0.001) optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=0.001) # 训练过程中保存损失值 gen_loss_hist = [] dis_loss_hist = [] # 训练数据准备 x_real, _ = get_real_samples(n_batch) x_real = torch.from_numpy(x_real).float() y_real = torch.ones(n_batch, 1) x_noise = torch.randn(n_batch, n_noise) # GAN模型训练 for epoch in range(n_epochs): # 更新判别器 y_fake = discriminator(generator(x_noise)) y_real_pred = discriminator(x_real.unsqueeze(1)) dis_loss_real = criterion(y_real_pred, y_real) dis_loss_fake = criterion(y_fake, torch.zeros(n_batch, 1)) dis_loss = dis_loss_real + dis_loss_fake dis_loss.backward() optimizer_d.step() discriminator.zero_grad() # 更新生成器 y_fake = discriminator(generator(x_noise)) gen_loss = criterion(y_fake, y_real) gen_loss.backward() optimizer_g.step() generator.zero_grad() # 保存损失值 gen_loss_hist.append(gen_loss.item()) dis_loss_hist.append(dis_loss.item()) # 绘制损失值曲线 plt.plot(gen_loss_hist, label='Generator Loss') plt.plot(dis_loss_hist, label='Discriminator Loss') plt.legend() # 模型训练 n_samples = 1000 n_noise = 10 n_hidden = 32 n_epochs = 2000 n_batch = 64 generator = Generator(n_noise, n_hidden, 1) discriminator = Discriminator(1, n_hidden, 1) gan = nn.Sequential(generator, discriminator) train_gan(generator, discriminator, gan, n_epochs, n_batch, n_noise) # 生成样本并绘制结果 x = np.linspace(-1, 1, n_samples) x = torch.from_numpy(x).float() y = generator(torch.randn(n_samples, n_noise)).squeeze().detach().numpy() plt.figure() plt.scatter(x, y, s=1) plt.show() 该代码通过定义生成器和判别器来实现GAN模型,生成器用于生成数据,判别器用于判断真实数据和生成数据。训练过程中先更新判别器,然后再更新生成器。本例使用了一个简单的二次函数作为真实数据的生成函数,使用Adam优化器和BCELoss损失函数进行训练。最终生成的数据可以在代码的最后绘制出来。
GAN(Generative Adversarial Network,生成对抗网络)是一种用于生成模型的深度学习架构。PyTorch是一个开源的深度学习框架,可以用来实现GAN模型。 在PyTorch中实现GAN,一般需要定义两个神经网络:一个生成器(Generator)和一个判别器(Discriminator)。生成器接收一个随机噪声作为输入,并尝试生成与训练数据相似的样本。判别器则接收来自生成器或训练数据的样本,并尝试区分它们。生成器和判别器相互对抗,通过训练来提升彼此的性能。 以下是一个简单的PyTorch GAN的示例代码: python import torch import torch.nn as nn # 定义生成器 class Generator(nn.Module): def __init__(self, input_size, output_size): super(Generator, self).__init__() self.model = nn.Sequential( nn.Linear(input_size, 128), nn.ReLU(), nn.Linear(128, output_size), nn.Tanh() ) def forward(self, x): return self.model(x) # 定义判别器 class Discriminator(nn.Module): def __init__(self, input_size): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(input_size, 128), nn.ReLU(), nn.Linear(128, 1), nn.Sigmoid() ) def forward(self, x): return self.model(x) # 定义训练过程 def train(generator, discriminator, num_epochs, batch_size, learning_rate): # 省略数据加载和优化器的代码 for epoch in range(num_epochs): for batch_idx, real_data in enumerate(dataloader): # 更新判别器 # 省略判别器训练代码 # 更新生成器 generator.zero_grad() fake_data = generator(sample_noise(batch_size)) fake_labels = torch.zeros(batch_size) fake_output = discriminator(fake_data) generator_loss = criterion(fake_output, fake_labels) generator_loss.backward() generator_optimizer.step() # 定义辅助函数 def sample_noise(batch_size): return torch.randn(batch_size, noise_dim) # 定义超参数 input_size = 100 output_size = 784 num_epochs = 200 batch_size = 64 learning_rate = 0.001 noise_dim = 100 # 创建生成器和判别器实例 generator = Generator(input_size, output_size) discriminator = Discriminator(output_size) # 定义损失函数和优化器 criterion = nn.BCELoss() generator_optimizer = torch.optim.Adam(generator.parameters(), lr=learning_rate) discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=learning_rate) # 开始训练 train(generator, discriminator, num_epochs, batch_size, learning_rate) 以上是一个简单的GAN实现示例,其中生成器和判别器使用全连接神经网络。当然,你可以根据具体任务的需求,对模型进行调整和改进。
### 回答1: 这里是一个简单的Pytorch实现元学习去噪的示例程序:import torch# 定义输入数据 input_data = torch.randn(100, 10) # 定义噪声数据 noise_data = torch.randn(100, 5)# 定义网络模型 model = torch.nn.Sequential( torch.nn.Linear(15, 10), torch.nn.ReLU(), torch.nn.Linear(10, 10) ) # 定义损失函数 loss_fn = torch.nn.MSELoss() # 定义优化器 optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)# 训练100步 for i in range(100): # 计算输入数据和噪声数据的组合 x = torch.cat([input_data, noise_data], dim=1) # 计算网络预测值 y_pred = model(x) # 计算损失函数 loss = loss_fn(y_pred, input_data) # 每步训练清零梯度 optimizer.zero_grad() # 计算梯度 loss.backward() # 更新参数 optimizer.step()print('训练结束') ### 回答2: 元学习是指学习如何学习的过程,可以用于快速适应新任务或环境。去噪是指消除输入数据中的噪声或异常值。下面是一个使用PyTorch编写的元学习去噪程序的示例: python import torch import torch.nn as nn import torch.optim as optim # 定义一个元学习去噪模型 class MetaDenoiser(nn.Module): def __init__(self): super(MetaDenoiser, self).__init__() self.encoder = nn.Sequential( nn.Linear(10, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 10) ) def forward(self, x): encoded = self.encoder(x) return encoded # 定义训练函数 def train(model, data, target): optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.MSELoss() for epoch in range(10): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 初始化数据和目标 data = torch.randn(100, 10) target = torch.randn(100, 10) # 初始化元学习去噪模型 meta_denoiser = MetaDenoiser() # 使用元学习进行去噪 for i in range(10): model = MetaDenoiser() # 在每个模型上训练 train(model, data, target) # 使用训练好的模型对数据进行去噪 denoised_data = model(data) # 更新数据和目标 data = denoised_data target = data # 输出去噪后的数据 print("去噪后的数据:", data) 上述程序定义了一个简单的元学习去噪模型MetaDenoiser,使用了多层感知器来编码输入数据。在训练过程中,首先初始化一个模型meta_denoiser,然后多次进行元学习迭代。在每个迭代中,使用训练好的模型对输入数据进行去噪,然后更新数据和目标,并将去噪后的数据作为下一次迭代的输入。最后输出去噪后的数据。 ### 回答3: import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # 定义网络结构 class DenoiseNet(nn.Module): def __init__(self): super(DenoiseNet, self).__init__() self.encoder = nn.Sequential( nn.Linear(784, 128), nn.ReLU(True), nn.Linear(128, 64), nn.ReLU(True) ) self.decoder = nn.Sequential( nn.Linear(64, 128), nn.ReLU(True), nn.Linear(128, 784), nn.Sigmoid() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x # 加载MNIST数据集 transform = transforms.ToTensor() train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 实例化模型 model = DenoiseNet() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 元学习去噪过程 for epoch in range(10): for i, (images, _) in enumerate(train_loader): # 添加噪声 noise = torch.randn(images.size()) noisy_images = images + noise # 将输入数据展开为一维向量 noisy_images = noisy_images.reshape(-1, 784) # 前向传播 outputs = model(noisy_images) loss = criterion(outputs, images) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, 10, i+1, len(train_loader), loss.item())) # 在测试集上评估模型性能 with torch.no_grad(): total_loss = 0 for images, _ in test_loader: images = images.reshape(-1, 784) outputs = model(images) loss = criterion(outputs, images) total_loss += loss.item() averaged_loss = total_loss / len(test_loader) print('Average Test Loss: {:.4f}'.format(averaged_loss))
以下是使用 PyTorch 实现 GAN 对鸢尾花数据集进行扩充的示例代码: python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import numpy as np class Generator(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.gen = nn.Sequential( nn.Linear(input_dim, 64), nn.ReLU(), nn.Linear(64, 128), nn.ReLU(), nn.Linear(128, 256), nn.ReLU(), nn.Linear(256, 512), nn.ReLU(), nn.Linear(512, output_dim), nn.Tanh() ) def forward(self, x): return self.gen(x) class Discriminator(nn.Module): def __init__(self, input_dim): super().__init__() self.disc = nn.Sequential( nn.Linear(input_dim, 512), nn.ReLU(), nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, x): return self.disc(x) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyper-parameters batch_size = 64 input_dim_g = 100 # Input noise dimension for generator input_dim_d = 4 # Input data dimension for discriminator (iris dataset has 4 features) output_dim_g = 4 # Output data dimension for generator (iris dataset has 4 features) lr = 0.0002 num_epochs = 200 # Load the iris dataset def load_data(): transform = transforms.Compose([ transforms.ToTensor(), ]) train_dataset = datasets.load_iris(root="./data", train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) return train_loader def train(generator, discriminator, train_loader): # Loss functions and optimizers criterion = nn.BCELoss() optimizer_g = optim.Adam(generator.parameters(), lr=lr) optimizer_d = optim.Adam(discriminator.parameters(), lr=lr) for epoch in range(num_epochs): for batch_idx, (real_data, _) in enumerate(train_loader): real_data = real_data.view(-1, 4).to(device) # Train discriminator: max log(D(x)) + log(1 - D(G(z))) noise = torch.randn(batch_size, input_dim_g).to(device) fake_data = generator(noise) label_real = torch.ones(batch_size, 1).to(device) label_fake = torch.zeros(batch_size, 1).to(device) # Forward pass real and fake data through discriminator separately output_real = discriminator(real_data) output_fake = discriminator(fake_data) # Calculate the loss for discriminator loss_d_real = criterion(output_real, label_real) loss_d_fake = criterion(output_fake, label_fake) loss_d = loss_d_real + loss_d_fake # Backward and optimize discriminator discriminator.zero_grad() loss_d.backward() optimizer_d.step() # Train generator: max log(D(G(z))) noise = torch.randn(batch_size, input_dim_g).to(device) fake_data = generator(noise) # Forward pass fake data through discriminator output_fake = discriminator(fake_data) # Calculate the loss for generator loss_g = criterion(output_fake, label_real) # Backward and optimize generator generator.zero_grad() loss_g.backward() optimizer_g.step() print(f"Epoch [{epoch+1}/{num_epochs}], Loss D: {loss_d.item():.4f}, Loss G: {loss_g.item():.4f}") return generator if __name__ == '__main__': # Set the seed value for reproducibility torch.manual_seed(42) # Load iris dataset and create the dataloader train_loader = load_data() # Initialize generator and discriminator generator = Generator(input_dim_g, output_dim_g).to(device) discriminator = Discriminator(input_dim_d).to(device) # Train the GAN model trained_generator = train(generator, discriminator, train_loader) # Generate fake data and convert it back to original scale with torch.no_grad(): noise = torch.randn(100, input_dim_g).to(device) fake_data = trained_generator(noise) fake_data = fake_data.cpu().numpy() # Convert the normalized data back to the original scale stats = np.load("./data/iris_stats.npz") fake_data = fake_data * stats['std'] + stats['mean'] # Save the generated data np.savetxt("./data/generated_data.csv", fake_data, delimiter=",") 在此示例代码中,我们使用 PyTorch 实现了简单的 GAN 模型。该模型由一个生成器和一个判别器组成。我们通过一个 4 维的鸢尾花数据集用于训练该 GAN 模型,并生成具有相同数据分布的合成数据集。 需要注意的是,在上述示例代码中,我们尚未对数据集进行任何增强。如果需要进行数据增强,则可以使用 PyTorch 的 transforms 模块进行数据增强操作。例如,以下代码演示了如何使用 transforms 模块进行数据增强操作: python transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomRotation(degrees=45), transforms.ToTensor(), ]) 这里,我们使用了随机水平翻转 (RandomHorizontalFlip) 和随机旋转 (RandomRotation) 进行数据增强。最后,我们使用 ToTensor 将数据转换为张量形式,以便将其传递给 GAN 模型进行训练。
下面是使用PyTorch实现对抗神经网络学习波士顿房价的示例代码: python import torch import torch.nn as nn import torch.optim as optim from sklearn.datasets import load_boston from sklearn.preprocessing import StandardScaler # 加载数据集并进行预处理 boston = load_boston() scaler = StandardScaler() X = scaler.fit_transform(boston.data) y = scaler.fit_transform(boston.target.reshape(-1, 1)) X = torch.from_numpy(X.astype('float32')) y = torch.from_numpy(y.astype('float32')) # 定义生成器模型 class Generator(nn.Module): def __init__(self, input_size, output_size, hidden_size): super(Generator, self).__init__() self.net = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, output_size) ) def forward(self, x): return self.net(x) # 定义判别器模型 class Discriminator(nn.Module): def __init__(self, input_size, hidden_size): super(Discriminator, self).__init__() self.net = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1), nn.Sigmoid() ) def forward(self, x): return self.net(x) # 定义模型参数 input_size = X.shape[1] hidden_size = 32 output_size = y.shape[1] lr = 0.001 batch_size = 64 num_epochs = 100 # 初始化模型和优化器 G = Generator(input_size, output_size, hidden_size) D = Discriminator(input_size + output_size, hidden_size) G_optimizer = optim.Adam(G.parameters(), lr) D_optimizer = optim.Adam(D.parameters(), lr) criterion = nn.BCELoss() # 定义训练函数 def train(): for epoch in range(num_epochs): for i in range(0, X.shape[0], batch_size): # 训练判别器 X_batch = X[i:i+batch_size] y_batch = y[i:i+batch_size] noise = torch.randn(batch_size, input_size) fake_data = G(noise) D_real = D(torch.cat([X_batch, y_batch], dim=1)) D_fake = D(torch.cat([noise, fake_data], dim=1)) D_real_loss = criterion(D_real, torch.ones_like(D_real)) D_fake_loss = criterion(D_fake, torch.zeros_like(D_fake)) D_loss = D_real_loss + D_fake_loss D_optimizer.zero_grad() D_loss.backward() D_optimizer.step() # 训练生成器 noise = torch.randn(batch_size, input_size) fake_data = G(noise) D_fake = D(torch.cat([noise, fake_data], dim=1)) G_loss = criterion(D_fake, torch.ones_like(D_fake)) G_optimizer.zero_grad() G_loss.backward() G_optimizer.step() # 打印损失 print('Epoch [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}'.format(epoch+1, num_epochs, D_loss.item(), G_loss.item())) # 训练模型 train() # 生成新的房价数据 noise = torch.randn(100, input_size) fake_data = G(noise) fake_data = scaler.inverse_transform(fake_data.detach().numpy()) print('Generated Data: \n', fake_data) 这段代码使用对抗神经网络来学习波士顿房价数据集。首先,加载数据集并进行预处理,然后定义生成器和判别器模型,以及相关的训练参数和优化器。在训练过程中,先训练判别器,再训练生成器,通过对抗训练来提高生成器的生成能力。最后,使用生成器来生成新的房价数据。
### 回答1: 这是一段使用DCGAN实现的简单代码:import torch import torch.nn as nn import torch.nn.functional as F# 定义生成器 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size*2) self.fc3 = nn.Linear(hidden_size*2, output_size) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.tanh(self.fc3(x)) return x # 定义判别器 class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size*2) self.fc3 = nn.Linear(hidden_size*2, output_size) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.sigmoid(self.fc3(x)) return x ### 回答2: DCGAN,也就是深度卷积生成对抗网络,是一种用于生成图像的深度学习模型。下面是一个简单的DCGAN代码示例: 首先,我们导入需要的库: import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers 接下来,我们定义生成器模型: def make_generator_model(): model = keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 28, 28, 1) return model 然后,我们定义判别器模型: def make_discriminator_model(): model = keras.Sequential() model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model 接下来,我们分别实例化生成器和判别器: generator = make_generator_model() discriminator = make_discriminator_model() 然后,我们定义损失函数和优化器: cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) 最后,我们定义训练过程: @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) 你可以根据需要调整训练批次大小(BATCH_SIZE)和训练循环的次数。希望以上简单的DCGAN代码示例对你有所帮助!
这里是一个使用PyTorch实现的DCGAN和DenseNet的图像分类代码示例: DCGAN代码示例: python import torch import torch.nn as nn # 定义生成器 Generator class Generator(nn.Module): def __init__(self, nz, ngf, nc): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) # 定义判别器 Discriminator class Discriminator(nn.Module): def __init__(self, nc, ndf): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input).view(-1, 1).squeeze(1) # 定义训练过程 def train(netG, netD, dataloader, criterion, optimizerG, optimizerD, device, nz, ngf, ndf, epochs): for epoch in range(epochs): for i, data in enumerate(dataloader, 0): # 训练判别器 netD.zero_grad() real_imgs = data[0].to(device) b_size = real_imgs.size(0) label = torch.full((b_size,), 1, dtype=torch.float, device=device) output = netD(real_imgs).view(-1) errD_real = criterion(output, label) noise = torch.randn(b_size, nz, 1, 1, device=device) fake_imgs = netG(noise) label.fill_(0) output = netD(fake_imgs.detach()).view(-1) errD_fake = criterion(output, label) errD = errD_real + errD_fake errD.backward() optimizerD.step() # 训练生成器 netG.zero_grad() label.fill_(1) output = netD(fake_imgs).view(-1) errG = criterion(output, label) errG.backward() optimizerG.step() # 输出训练状态 print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, epochs, i, len(dataloader), errD.item(), errG.item())) # 定义超参 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") nz = 100 ngf = 64 ndf = 64 epochs = 5 lr = 0.0002 beta1 = 0.5 batch_size = 128 image_size = 64 nc = 3 # 加载数据集 dataset = torchvision.datasets.CIFAR10(root='./data', download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(image_size), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) # 初始化网络 netG = Generator(nz, ngf, nc).to(device) netD = Discriminator(nc, ndf).to(device) criterion = nn.BCELoss() optimizerG = torch.optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerD = torch.optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) # 训练网络 train(netG, netD, dataloader, criterion, optimizerG, optimizerD, device, nz, ngf, ndf, epochs) DenseNet代码示例: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义DenseNet模型 class DenseNet(nn.Module): def __init__(self): super(DenseNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Sequential(*self._make_dense_layers(64, 12)), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 128, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.AvgPool2d(kernel_size=8, stride=1), ) self.classifier = nn.Linear(128, 10) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def _make_dense_layers(self, in_channels, num_blocks): layers = [] for i in range(num_blocks): layers.append(Bottleneck(in_channels)) in_channels += 32 return layers # 定义Bottleneck模块 class Bottleneck(nn.Module): def __init__(self, in_channels): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(32) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = nn.ReLU(inplace=True)(out) out = self.conv2(out) out = self.bn2(out) out = nn.ReLU(inplace=True)(out) out = torch.cat((x, out), 1) return out # 训练模型 def train(net, trainloader, criterion, optimizer, device, epochs): for epoch in range(epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 # 定义超参 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") epochs = 10 lr = 0.1 momentum = 0.9 batch_size = 128 image_size = 32 # 加载数据集 transform_train = transforms.Compose([ transforms.RandomCrop(image_size, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) # 初始化网络 net = DenseNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) # 训练网络 train(net, trainloader, criterion, optimizer, device, epochs) 这里的代码示例可以用来训练和测试CIFAR-10数据集的分类任务。注意要根据数据集的要求调整模型的输入和输出大小。
A: 以下是生成对抗网络的PyTorch代码示例: python import torch import torch.nn as nn import numpy as np # 定义生成器 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.generator = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, output_size) ) def forward(self, x): x = self.generator(x) return x # 定义鉴别器 class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.discriminator = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, output_size), nn.Sigmoid() ) def forward(self, x): x = self.discriminator(x) return x # 定义超参 batch_size = 100 learning_rate = 0.002 latent_size = 100 hidden_size = 256 image_size = 28*28 num_epochs = 200 # 加载数据 def load_mnist_data(): from torchvision.datasets import MNIST from torchvision import transforms train_data = MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_data = MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=True) return train_loader, test_loader train_loader, _ = load_mnist_data() # 初始化生成器和鉴别器 generator = Generator(latent_size, hidden_size, image_size) discriminator = Discriminator(image_size, hidden_size, 1) # 定义优化器和损失函数 G_optimizer = torch.optim.Adam(generator.parameters(), lr=learning_rate) D_optimizer = torch.optim.Adam(discriminator.parameters(), lr=learning_rate) criterion = nn.BCELoss() # 定义训练过程 def train_GAN(generator, discriminator, G_optimizer, D_optimizer, criterion, num_epochs, device): generator.to(device) discriminator.to(device) generator.train() discriminator.train() for epoch in range(num_epochs): for idx, (real_data, _) in enumerate(train_loader): real_data = real_data.view(-1, image_size).to(device) # 训练鉴别器 noise = torch.randn(batch_size, latent_size).to(device) fake_data = generator(noise) real_labels = torch.ones(batch_size, 1).to(device) fake_labels = torch.zeros(batch_size, 1).to(device) D_optimizer.zero_grad() D_real_outputs = discriminator(real_data) D_real_loss = criterion(D_real_outputs, real_labels) D_fake_outputs = discriminator(fake_data) D_fake_loss = criterion(D_fake_outputs, fake_labels) D_loss = D_real_loss + D_fake_loss D_loss.backward() D_optimizer.step() # 训练生成器 noise = torch.randn(batch_size, latent_size).to(device) fake_data = generator(noise) G_optimizer.zero_grad() G_outputs = discriminator(fake_data) G_loss = criterion(G_outputs, real_labels) G_loss.backward() G_optimizer.step() if idx % 50 == 0: print('Epoch [{}/{}], Step [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}' .format(epoch+1, num_epochs, idx+1, len(train_loader), D_loss.item(), G_loss.item())) # 运行训练 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_GAN(generator, discriminator, G_optimizer, D_optimizer, criterion, num_epochs, device)
GAN算法的实现需要使用深度学习框架,如TensorFlow、PyTorch等。以下是一个使用PyTorch实现GAN生成手写数字图片的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils # 定义生成器 class Generator(nn.Module): def __init__(self, ngpu): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.ConvTranspose2d(100, 64 * 4, 4, 1, 0, bias=False), nn.BatchNorm2d(64 * 4), nn.ReLU(True), nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 2), nn.ReLU(True), nn.ConvTranspose2d(64 * 2, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) # 定义判别器 class Discriminator(nn.Module): def __init__(self, ngpu): super(Discriminator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.Conv2d(1, 64, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 64 * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64 * 2, 64 * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64 * 4, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input) # 定义超参数 batch_size = 128 image_size = 64 nc = 1 ngf = 64 ndf = 64 nz = 100 num_epochs = 100 lr = 0.0002 beta1 = 0.5 ngpu = 1 # 加载手写数字数据集 dataset = dset.MNIST(root='./data', download=True, transform=transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) # 定义生成器、判别器和优化器 netG = Generator(ngpu).cuda() netD = Discriminator(ngpu).cuda() criterion = nn.BCELoss() optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) # 训练GAN for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 更新判别器 netD.zero_grad() real = data[0].cuda() batch_size = real.size(0) label = torch.full((batch_size,), 1, device='cuda') output = netD(real).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(batch_size, nz, 1, 1, device='cuda') fake = netG(noise) label.fill_(0) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() # 更新生成器 netG.zero_grad() label.fill_(1) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() # 输出训练状态 if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) if epoch == 0 and i == 0: vutils.save_image(real, '%s/real_samples.png' % "./results", normalize=True) if i % 100 == 0: vutils.save_image(fake.detach(), '%s/fake_samples_epoch_%03d_iterations_%03d.png' % ("./results", epoch, i), normalize=True) 这段代码实现了一个生成手写数字图片的GAN模型,其中包括一个生成器和一个判别器。在训练过程中,首先更新判别器,然后更新生成器,最后输出训练状态和生成的图片。
以下是一个基于GAN的深度图像重建算法的Python代码示例,使用的是PyTorch框架: python import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import torchvision.transforms as transforms import torchvision.datasets as dset from torchvision.utils import save_image import os # 定义超参数 batch_size = 128 lr = 0.0002 train_epoch = 100 beta1 = 0.5 nz = 100 ngf = 64 ndf = 64 # 定义Generator模型 class generator(nn.Module): def __init__(self): super(generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): output = self.main(input) return output # 定义Discriminator模型 class discriminator(nn.Module): def __init__(self): super(discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(3, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): output = self.main(input) return output.view(-1, 1) # 初始化模型和优化器 G = generator() D = discriminator() G.cuda() D.cuda() G.apply(weights_init) D.apply(weights_init) criterion = nn.BCELoss() optimizerD = optim.Adam(D.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(G.parameters(), lr=lr, betas=(beta1, 0.999)) # 定义训练过程 for epoch in range(train_epoch): for i, data in enumerate(dataloader, 0): real_cpu, _ = data batch_size = real_cpu.size(0) input = Variable(real_cpu.cuda()) target = Variable(torch.ones(batch_size).cuda()) noise = Variable(torch.randn(batch_size, nz, 1, 1).cuda()) fake = G(noise) target_fake = Variable(torch.zeros(batch_size).cuda()) # 训练Discriminator D.zero_grad() output = D(input) errD_real = criterion(output, target) errD_real.backward() output_fake = D(fake.detach()) errD_fake = criterion(output_fake, target_fake) errD_fake.backward() errD = errD_real + errD_fake optimizerD.step() # 训练Generator G.zero_grad() output_fake = D(fake) errG = criterion(output_fake, target) errG.backward() optimizerG.step() # 保存生成的图像 fake = G(fixed_noise) save_image(fake.data, 'output/fake_samples_epoch_%03d.png' % epoch, normalize=True) # 保存模型 torch.save(G.state_dict(), 'generator.pth') torch.save(D.state_dict(), 'discriminator.pth')
首先,让我们了解一下PORCH是什么。PORCH是一个轻量级的深度学习框架,它支持CPU和GPU加速,并且易于使用。它提供了常用的神经网络层和优化器,并且可以方便地扩展到自定义的神经网络层和优化器。在这里,我们将使用PORCH来实现基于卷积神经网络的图像去噪算法。 CIFAR10是一个常用的图像分类数据集,其中包含10个不同类别的60000个32x32彩色图像。在这里,我们将使用CIFAR10数据集来训练我们的模型,并使用训练好的模型来去除图像中的噪声。 下面是我们的代码实现: python import porch import numpy as np from porch.datasets import cifar10 from porch.nn import Conv2D, BatchNorm, ReLU, ConvTranspose2D, Sequential from porch.utils import tqdm class DenoisingNet(porch.nn.Module): def __init__(self): super().__init__() self.conv1 = Conv2D(3, 32, kernel_size=3, padding=1) self.bn1 = BatchNorm(32) self.relu1 = ReLU() self.conv2 = Conv2D(32, 64, kernel_size=3, padding=1) self.bn2 = BatchNorm(64) self.relu2 = ReLU() self.conv3 = Conv2D(64, 128, kernel_size=3, padding=1) self.bn3 = BatchNorm(128) self.relu3 = ReLU() self.conv4 = Conv2D(128, 64, kernel_size=3, padding=1) self.bn4 = BatchNorm(64) self.relu4 = ReLU() self.conv5 = Conv2D(64, 32, kernel_size=3, padding=1) self.bn5 = BatchNorm(32) self.relu5 = ReLU() self.conv6 = Conv2D(32, 3, kernel_size=3, padding=1) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.conv3(out) out = self.bn3(out) out = self.relu3(out) out = self.conv4(out) out = self.bn4(out) out = self.relu4(out) out = self.conv5(out) out = self.bn5(out) out = self.relu5(out) out = self.conv6(out) return out def train(model, train_loader, optimizer, criterion, device): model.train() running_loss = 0.0 for batch_idx, (data, target) in enumerate(tqdm(train_loader)): data = data.to(device) target = target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / len(train_loader) def test(model, test_loader, criterion, device): model.eval() running_loss = 0.0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(tqdm(test_loader)): data = data.to(device) target = target.to(device) output = model(data) loss = criterion(output, target) running_loss += loss.item() return running_loss / len(test_loader) if __name__ == '__main__': # 加载CIFAR10数据集 train_data, test_data = cifar10.load_data() # 定义模型、损失函数、优化器 model = DenoisingNet() criterion = porch.nn.MSELoss() optimizer = porch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) train_loader = porch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) test_loader = porch.utils.data.DataLoader(test_data, batch_size=64, shuffle=False) epochs = 10 for epoch in range(epochs): train_loss = train(model, train_loader, optimizer, criterion, device) test_loss = test(model, test_loader, criterion, device) print(f'Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}') # 保存模型 torch.save(model.state_dict(), 'denoising_net.pth') # 加载模型 model.load_state_dict(torch.load('denoising_net.pth')) model.eval() # 加载测试图像并添加噪声 test_image = np.array(Image.open('test_image.png')) noise = np.random.normal(0, 0.1, test_image.shape) noisy_image = np.clip(test_image + noise, 0, 1) # 对图像进行去噪 input_image = torch.from_numpy(noisy_image.transpose((2, 0, 1))).unsqueeze(0).float().to(device) output_image = model(input_image).squeeze(0).cpu().detach().numpy().transpose((1, 2, 0)) output_image = np.clip(output_image, 0, 1) # 显示图像 plt.subplot(1, 3, 1) plt.title('Original') plt.imshow(test_image) plt.subplot(1, 3, 2) plt.title('Noisy') plt.imshow(noisy_image) plt.subplot(1, 3, 3) plt.title('Denoised') plt.imshow(output_image) plt.show() 在这个例子中,我们定义了一个名为DenoisingNet的模型,它由6个卷积层和6个批量归一化层组成。我们使用MSE损失函数来训练模型,并使用Adam优化器进行参数更新。我们通过迭代训练数据集来训练模型,并在测试数据集上进行验证。在训练完成后,我们将模型保存到denoising_net.pth文件中,并加载该模型来去除测试图像中的噪声。 最后,我们显示了原始图像、加噪图像和去噪图像。可以看出,去噪效果非常好。 这就是如何使用PORCH框架基于卷积神经网络的图像去噪的实现。

最新推荐

电力及公用事业行业月报月第二产业用电量及水电发电量回暖我国国民经济恢复向好-16页.pdf.zip

电力及公用事业、电子设备与新能源类报告 文件类型:PDF 打开方式:直接解压,无需密码

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

1.创建以自己姓名拼音缩写为名的数据库,创建n+自己班级序号(如n10)为名的数据表。2.表结构为3列:第1列列名为id,设为主键、自增;第2列列名为name;第3列自拟。 3.为数据表创建模型,编写相应的路由、控制器和视图,视图中用无序列表(ul 标签)呈现数据表name列所有数据。 4.创建视图,在表单中提供两个文本框,第一个文本框用于输入以上数据表id列相应数值,以post方式提交表单。 5.控制器方法根据表单提交的id值,将相应行的name列修改为第二个文本框中输入的数据。

步骤如下: 1. 创建数据库和数据表 创建名为xny_n10的数据表,其中xny为姓名拼音缩写,n10为班级序号。 ``` CREATE DATABASE IF NOT EXISTS xny_n10; USE xny_n10; CREATE TABLE IF NOT EXISTS xny_n10 ( id INT(11) PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), column3 VARCHAR(50) ); ``` 2. 创建模型 在app/Models目录下创建XnyN10.php文件,定义XnyN10模型类,继承自I

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

HAL多学科开放获取档案库的作用及代理重加密和认证委托的研究

0HAL编号:tel-038172580https://theses.hal.science/tel-038172580提交日期:2022年10月17日0HAL是一个多学科开放获取档案库,用于存储和传播科学研究文档,无论其是否发表。这些文档可以来自法国或国外的教育和研究机构,也可以来自公共或私人研究中心。0HAL多学科开放获取档案库旨在存储和传播法国或国外的教育和研究机构、公共或私人实验室发表或未发表的研究文档。0代理重加密和认证委托的贡献0Anass Sbai0引用此版本:0Anass Sbai. 代理重加密和认证委托的贡献. 离散数学[cs.DM]. 皮卡第朱尔大学, 2021. 法语. �NNT:2021AMIE0032�. �tel-03817258�0博士学位论文0专业“计算机科学”0提交给科技与健康学院博士学位学校0皮卡第朱尔大学0由0Anass SBAI0获得皮卡第朱尔大学博士学位0代理重加密和认证委托的贡献0于2021年7月5日,在评审人的意见后,面向考试委员会进行

c++输入若干不同的整数构成的升序序列,请编写一个程序,找出序列中有多少个数是序列中其他两个数的平均值要求使用算法,使计算量最小,计算时间最短

算法思路: 1. 先将输入的升序序列存储到vector<int>中 2. 枚举每个数,以该数为平均数,查找序列中是否存在两个数的平均值等于该数 3. 可以采用双指针法,从序列的两端开始查找,如果两个指针所指的数的平均值大于目标数,则右指针左移;如果平均值小于目标数,则左指针右移;如果平均值等于目标数,则找到一个符合条件的数 4. 计数器加1,继续枚举下一个数 代码实现如下: ```c++ #include<iostream> #include<vector> using namespace std; int main() { int n; cin >> n;