在贝塞尔曲线中加一点,js求这个点的控制点和前后控制点
时间: 2024-03-08 17:45:19 浏览: 88
下面是在JavaScript中计算在三次贝塞尔曲线中加入一个点后的新控制点和起点、终点的代码示例:
```javascript
function addPointToBezierCurve(point, p0, p1, p2, p3) {
// Find the closest point Q on the curve to the new point P
var q = findClosestPointOnBezierCurve(point, p0, p1, p2, p3);
// Divide the curve into two parts at the point Q
var curve1 = [p0, p1, q, point];
var curve2 = [point, q, p2, p3];
// Calculate new control points for the two curves
var c1 = calculateControlPoints(curve1);
var c2 = calculateControlPoints(curve2);
// Return the new control points and start/end points
return {
p0: p0,
p1: c1[1],
p2: c2[0],
p3: p3,
newPointControlPoints: [c1[2], c2[1]]
};
}
function findClosestPointOnBezierCurve(point, p0, p1, p2, p3) {
// Use de Casteljau algorithm to find the closest point on the curve
var t = 0.5;
for (var i = 0; i < 10; i++) {
var Q = deCasteljau(p0, p1, p2, p3, t);
var tangent = subtractPoints(deCasteljau(p0, p1, p2, p3, t + 0.001), Q);
var distance = distanceBetweenPoints(point, Q);
if (distance < 0.1) {
return Q;
}
t -= dotProduct(subtractPoints(Q, point), tangent) / Math.pow(magnitude(tangent), 2);
t = Math.max(0, Math.min(1, t));
}
return deCasteljau(p0, p1, p2, p3, t);
}
function calculateControlPoints(curve) {
// Calculate new control points for a curve that passes through the given points
var p0 = curve[0];
var p1 = curve[1];
var p2 = curve[2];
var p3 = curve[3];
var d1 = subtractPoints(p1, p0);
var d2 = subtractPoints(p2, p1);
var d3 = subtractPoints(p3, p2);
var a1 = magnitude(d1) / (magnitude(d1) + magnitude(d2));
var a2 = magnitude(d2) / (magnitude(d2) + magnitude(d3));
var b1 = addPoints(p1, scalePoint(d1, a2 / a1));
var b2 = subtractPoints(p2, scalePoint(d3, (1 - a2) / (1 - a1)));
var control1 = addPoints(b1, b2);
var control2 = subtractPoints(b2, b1);
return [p1, control1, control2];
}
function deCasteljau(p0, p1, p2, p3, t) {
// Use de Casteljau algorithm to find the point on the curve at the given parameter t
var q0 = interpolatePoints(p0, p1, t);
var q1 = interpolatePoints(p1, p2, t);
var q2 = interpolatePoints(p2, p3, t);
var r0 = interpolatePoints(q0, q1, t);
var r1 = interpolatePoints(q1, q2, t);
var point = interpolatePoints(r0, r1, t);
return point;
}
function subtractPoints(point1, point2) {
return [point1[0] - point2[0], point1[1] - point2[1]];
}
function addPoints(point1, point2) {
return [point1[0] + point2[0], point1[1] + point2[1]];
}
function scalePoint(point, scalar) {
return [point[0] * scalar, point[1] * scalar];
}
function dotProduct(point1, point2) {
return point1[0] * point2[0] + point1[1] * point2[1];
}
function magnitude(point) {
return Math.sqrt(Math.pow(point[0], 2) + Math.pow(point[1], 2));
}
function distanceBetweenPoints(point1, point2) {
var dx = point1[0] - point2[0];
var dy = point1[1] - point2[1];
return Math.sqrt(dx * dx + dy * dy);
}
function interpolatePoints(point1, point2, t) {
return [point1[0] + (point2[0] - point1[0]) * t, point1[1] + (point2[1] - point1[1]) * t];
}
```
这段代码中的addPointToBezierCurve()函数接受五个参数:新点的坐标point和原始三次贝塞尔曲线的四个点p0、p1、p2、p3。它使用findClosestPointOnBezierCurve()函数找到离新点最近的点Q,然后将曲线分成两个部分,分别计算新的控制点和起点、终点。最后,函数返回新的控制点和起点、终点的坐标。
需要注意的是,这段代码中的计算方法可能不是最优的,因为在实际应用中,可能需要考虑更多的情况。但是,这段代码可以帮助你理解在三次贝塞尔曲线中加入一个点时,如何计算新的控制点和起点、终点。
阅读全文