稀疏矩阵十字链表Python
时间: 2023-11-19 13:55:04 浏览: 151
aaa.rar_visual c
稀疏矩阵是指矩阵中大部分元素为0的矩阵。为了节省存储空间和提高运算效率,可以使用稀疏矩阵的存储方式——十字链表。十字链表是一种特殊的链表结构,它由行链表和列链表组成,每个节点同时属于行链表和列链表。在十字链表中,行链表和列链表的头节点分别为行头节点和列头节点,它们的数据域分别存储行号和列号。数据节点的数据域存储矩阵中的非零元素值,指针域分别指向同一行和同一列的下一个非零元素节点。
以下是Python实现稀疏矩阵十字链表的基本步骤:
1. 定义节点类,包括数据域和指针域。
2. 定义行头节点和列头节点。
3. 读入矩阵,创建数据节点,并将其插入到行链表和列链表中。
4. 实现矩阵的加法、减法和乘法等运算。
具体实现细节可以参考下面的代码示例:
```
class MatNode:
def __init__(self, data=0, row=0, col=0):
self.data = data
self.row = row
self.col = col
self.right = None
self.down = None
class SparseMatrix:
def __init__(self, mat=[]):
self.rows = len(mat)
self.cols = len(mat[0])
self.rheads = [MatNode() for i in range(self.rows)]
self.cheads = [MatNode() for i in range(self.cols)]
for i in range(self.rows):
for j in range(self.cols):
if mat[i][j] != 0:
node = MatNode(mat[i][j], i, j)
self.insert(node)
def insert(self, node):
row, col = node.row, node.col
rhead, chead = self.rheads[row], self.cheads[col]
p, q = rhead, chead
while p.right and p.right.col < col:
p = p.right
while q.down and q.down.row < row:
q = q.down
node.right = p.right
node.down = q.down
p.right = q.down = node
def add(self, other):
if self.rows != other.rows or self.cols != other.cols:
return None
res = SparseMatrix()
for i in range(self.rows):
p, q = self.rheads[i], other.rheads[i]
while p.right and q.right:
if p.right.col < q.right.col:
res.insert(MatNode(p.right.data, i, p.right.col))
p = p.right
elif p.right.col > q.right.col:
res.insert(MatNode(q.right.data, i, q.right.col))
q = q.right
else:
res.insert(MatNode(p.right.data + q.right.data, i, p.right.col))
p, q = p.right, q.right
while p.right:
res.insert(MatNode(p.right.data, i, p.right.col))
p = p.right
while q.right:
res.insert(MatNode(q.right.data, i, q.right.col))
q = q.right
return res
def sub(self, other):
if self.rows != other.rows or self.cols != other.cols:
return None
res = SparseMatrix()
for i in range(self.rows):
p, q = self.rheads[i], other.rheads[i]
while p.right and q.right:
if p.right.col < q.right.col:
res.insert(MatNode(p.right.data, i, p.right.col))
p = p.right
elif p.right.col > q.right.col:
res.insert(MatNode(-q.right.data, i, q.right.col))
q = q.right
else:
res.insert(MatNode(p.right.data - q.right.data, i, p.right.col))
p, q = p.right, q.right
while p.right:
res.insert(MatNode(p.right.data, i, p.right.col))
p = p.right
while q.right:
res.insert(MatNode(-q.right.data, i, q.right.col))
q = q.right
return res
def mul(self, other):
if self.cols != other.rows:
return None
res = SparseMatrix([[0] * other.cols for i in range(self.rows)])
for i in range(self.rows):
p = self.rheads[i].right
while p:
j = p.col
q = other.cheads[j].down
while q:
k = q.row
res[i][k] += p.data * q.data
q = q.down
p = p.right
return res
def display(self):
for i in range(self.rows):
p = self.rheads[i].right
for j in range(self.cols):
if p and p.col == j:
print(p.data, end=' ')
p = p.right
else:
print(0, end=' ')
print()
# 测试代码
mat1 = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
mat2 = [[4, 0, 0], [0, 5, 0], [0, 0, 6]]
smat1 = SparseMatrix(mat1)
smat2 = SparseMatrix(mat2)
smat3 = smat1.add(smat2)
smat4 = smat1.sub(smat2)
smat5 = smat1.mul(smat2)
smat1.display()
smat2.display()
smat3.display()
smat4.display()
smat5.display()
```
阅读全文