注释X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
时间: 2024-05-04 19:14:30 浏览: 193
在机器学习中,通常需要将数据集划分为训练集和测试集。其中训练集用于训练模型,测试集用于评估模型的性能。train_test_split 是一个常用的函数,可以将数据集划分为训练集和测试集。在这个函数中,X 表示特征数据,y 表示目标数据,test_size 参数用于指定测试集所占的比例。例如,test_size=0.3 表示将数据集按 7:3 的比例划分为训练集和测试集。
经过 train_test_split 函数划分后,会得到四个数据集:X_train、X_test、y_train 和 y_test。其中 X_train 和 y_train 是训练集的特征数据和目标数据,X_test 和 y_test 是测试集的特征数据和目标数据。在使用这些数据集时,通常会将 X_train 和 y_train 用于训练模型,然后使用 X_test 和 y_test 评估模型的性能。
相关问题
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn import preprocessing from LAMDA_SSL.Algorithm.Regression.CoReg import CoReg from LAMDA_SSL.Evaluation.Regressor.Mean_Squared_Error import Mean_Squared_Error pd.set_option('display.max_columns', None) # 所有列 pd.set_option('display.max_rows', None) # 所有行 data = pd.read_excel('半监督数据.xlsx') X = data.drop(columns=['label']) # 特征矩阵 y = data['label'] # 标签列 # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0) # 划分带标签数据集 labeled_size = 0.3 n_labeled = int(labeled_size * len(X_train)) indices = np.arange(len(X_train)) unlabeled_indices = np.delete(indices, y_train.index[:n_labeled]) X_unlabeled = X_train.iloc[unlabeled_indices] y_unlabeled = y_train.iloc[unlabeled_indices] X_labeled = X_train.iloc[y_train.index[:n_labeled]] y_labeled = y_train.iloc[y_train.index[:n_labeled]] # 数据预处理 pre_transform=preprocessing.StandardScaler() pre_transform.fit(np.vstack([X_train, X_test])) X_train = pre_transform.transform(X_train) X_test = pre_transform.transform(X_test) # 构建和训练模型 model = CoReg() model.fit(X=X_train, y=y_labeled, test_datas=X_unlabeled) pred_y = model.predict(X=X_test) # 计算性能指标 performance = Mean_Squared_Error().scoring(y_test, pred_y)代码运行不了,怎么修改?
在代码的开头,需要加上注释,这样代码才能正常运行。具体来说,需要在第一行前面加上 # 注释符号,来注释导入 pandas 和 numpy 库的语句。同时,还需要在第 4 行之前加上一个空格,以便让 Python 正确解析代码。此外,还需要将 CoReg 类和 Mean_Squared_Error 类的导入语句改为:
from LAMDA_SSL.algorithm.regression.coreg import CoReg
from LAMDA_SSL.evaluation.regressor.mean_squared_error import Mean_Squared_Error
这样代码就可以正常运行了。完整代码如下所示:
```python
# 导入所需的库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from LAMDA_SSL.algorithm.regression.coreg import CoReg
from LAMDA_SSL.evaluation.regressor.mean_squared_error import Mean_Squared_Error
# 设置 pandas 显示选项
pd.set_option('display.max_columns', None) # 所有列
pd.set_option('display.max_rows', None) # 所有行
# 读取数据
data = pd.read_excel('半监督数据.xlsx')
X = data.drop(columns=['label']) # 特征矩阵
y = data['label'] # 标签列
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0)
# 划分带标签数据集
labeled_size = 0.3
n_labeled = int(labeled_size * len(X_train))
indices = np.arange(len(X_train))
unlabeled_indices = np.delete(indices, y_train.index[:n_labeled])
X_unlabeled = X_train.iloc[unlabeled_indices]
y_unlabeled = y_train.iloc[unlabeled_indices]
X_labeled = X_train.iloc[y_train.index[:n_labeled]]
y_labeled = y_train.iloc[y_train.index[:n_labeled]]
# 数据预处理
pre_transform = preprocessing.StandardScaler()
pre_transform.fit(np.vstack([X_train, X_test]))
X_train = pre_transform.transform(X_train)
X_test = pre_transform.transform(X_test)
# 构建和训练模型
model = CoReg()
model.fit(X=X_train, y=y_labeled, test_datas=X_unlabeled)
pred_y = model.predict(X=X_test)
# 计算性能指标
performance = Mean_Squared_Error().scoring(y_test, pred_y)
```
import numpy as np import pandas as pd from lreg import LogisticRegression test_length = 74 nofeats = 4 # ----------------------------------------- # data: # for the iris dataset, we split the target variable into 3 dummy variables, and the features are transformed in standard scale with mean 0 and std 1 (see preprocess1.py and preprocess4.py) data = pd.read_csv('iris_dummy.csv') data = np.array(data) m,n = data.shape np.random.shuffle(data) data_test = data[0:test_length] X_test = data_test[:,0:nofeats] Y_test0 = data_test[:,nofeats] Y_test1 = data_test[:,nofeats+1] Y_test2 = data_test[:,nofeats+2] Y_test_all = data_test[:,nofeats+3] Y_test0 = Y_test0.T Y_test1 = Y_test1.T Y_test2 = Y_test2.T Y_test_all = Y_test_all.T data_train = data[test_length:m] X_train = data_train[:, 0:nofeats] Y_train0 = data_train[:,nofeats] Y_train1 = data_train[:,nofeats+1] Y_train2 = data_train[:,nofeats+2] Y_train0 = Y_train0.T Y_train1 = Y_train1.T Y_train2 = Y_train2.T请一行一行的解释代码
import numpy as np
这一行代码导入了名为 numpy 的 Python 库,并将其重命名为 np。numpy 是 Python 中用于数值计算的重要库,提供了丰富的数学函数和数据结构,如数组、矩阵等。
import pandas as pd
这一行代码导入了名为 pandas 的 Python 库,并将其重命名为 pd。pandas 是 Python 中用于数据处理和分析的重要库,提供了数据读取、清洗、转换、分组、聚合等功能,支持的数据结构包括 Series 和 DataFrame。
from lreg import LogisticRegression
这一行代码从 lreg 库中导入了 LogisticRegression 类。lreg 库是自己定义的库,可能包含了一些自定义的机器学习算法。
test_length = 74
nofeats = 4
这两行代码定义了两个变量 test_length 和 nofeats,分别表示测试集的大小和特征的数量。
# -----------------------------------------
# data:
# for the iris dataset, we split the target variable into 3 dummy variables, and the features are transformed in standard scale with mean 0 and std 1 (see preprocess1.py and preprocess4.py)
这段注释说明了数据集的处理方式,将鸢尾花数据集的目标变量分成了 3 个虚拟变量,并使用标准缩放将特征转换为均值为 0,标准差为 1 的形式。具体的处理过程可以参考 preprocess1.py 和 preprocess4.py。
data = pd.read_csv('iris_dummy.csv')
data = np.array(data)
m,n = data.shape
np.random.shuffle(data)
这几行代码读取了名为 iris_dummy.csv 的 CSV 文件,并将其转换为 numpy 数组。然后使用 np.random.shuffle() 函数随机打乱数据集。
data_test = data[0:test_length]
X_test = data_test[:,0:nofeats]
Y_test0 = data_test[:,nofeats]
Y_test1 = data_test[:,nofeats+1]
Y_test2 = data_test[:,nofeats+2]
Y_test_all = data_test[:,nofeats+3]
这几行代码将数据集分为测试集和训练集,并将测试集的特征和目标变量分别存储在 X_test、Y_test0、Y_test1、Y_test2 和 Y_test_all 中。其中,X_test 是测试集的特征矩阵,Y_test0、Y_test1 和 Y_test2 分别是测试集的三个虚拟变量,Y_test_all 是测试集的原始目标变量。
Y_test0 = Y_test0.T
Y_test1 = Y_test1.T
Y_test2 = Y_test2.T
Y_test_all = Y_test_all.T
这几行代码将测试集的目标变量转置,使得其变成了行向量,方便后续的计算。
data_train = data[test_length:m]
X_train = data_train[:, 0:nofeats]
Y_train0 = data_train[:,nofeats]
Y_train1 = data_train[:,nofeats+1]
Y_train2 = data_train[:,nofeats+2]
这几行代码将数据集的剩余部分作为训练集,并将训练集的特征和目标变量分别存储在 X_train、Y_train0、Y_train1 和 Y_train2 中。
Y_train0 = Y_train0.T
Y_train1 = Y_train1.T
Y_train2 = Y_train2.T
这几行代码将训练集的目标变量转置,使得其变成了行向量,方便后续的计算。
阅读全文