python几何平均最大子数组
时间: 2023-07-30 22:02:51 浏览: 132
在Python中求解几何平均最大子数组的问题可以使用滑动窗口的方法来实现。首先定义一个函数,输入一个整数数组,以及子数组的长度,输出该长度的子数组中的几何平均最大值。
具体算法如下:
1. 初始化最大几何平均值为1,当前几何平均值为1。
2. 使用一个滑动窗口来遍历数组,窗口的大小为给定的子数组长度。
3. 对于每个窗口,计算窗口中的元素的几何平均值。
4. 如果当前窗口的几何平均值大于最大几何平均值,则更新最大几何平均值。
5. 移动窗口,窗口左边界右移1个位置,窗口右边界也右移1个位置。
6. 重复步骤3-5,直到遍历完整个数组。
7. 返回最大几何平均值。
以下是一个示例代码实现:
```python
def geometric_avg(arr, length):
max_avg = 1
curr_avg = 1
left = right = 0
while right < len(arr):
if right - left +1 == length:
curr_avg = 1
for i in range(left, right+1):
curr_avg *= arr[i]
curr_avg = curr_avg**(1/length)
max_avg = max(max_avg, curr_avg)
left += 1
right += 1
return max_avg
```
这样就可以通过调用`geometric_avg`函数来求解给定数组中几何平均最大的子数组了。
注意:以上代码假设给定长度大于等于1,且数组中的元素都为正数。如果存在负数或0,需要根据实际情况进行适当的修改。
阅读全文