priority_queue 空间复杂度

时间: 2023-11-06 18:05:15 浏览: 39
priority_queue的底层实现是通过二叉堆来实现的。二叉堆是一种完全二叉树,其中每个节点的值都大于或等于其子节点的值(最大堆),或者小于或等于其子节点的值(最小堆)。在priority_queue中,push操作将新元素插入到堆的末尾,并通过上浮操作将其调整到正确的位置。pop操作将堆顶元素(最大或最小元素)移除,并通过下沉操作将新的堆顶元素调整到正确的位置。因此,push和pop操作的时间复杂度为O(logN),其中N是priority_queue中元素的个数。而空间复杂度则为O(N),因为需要使用额外的空间来存储二叉堆的节点。
相关问题

A*算法的空间复杂度

A*算法是一种常用的启发式搜索算法,于在图形或网络中找到最短路径。它使用了一个估计函数来评估每个节点的优先级,并选择优先级最高的节点进行扩展。A*算法的空间复杂度取决于两个因素:节点的数量和存储节点信息所需的空间。 在最坏情况下,A*算法的空间复杂度可以达到指数级别,即O(b^d),其中b是每个节点的平均分支因子,d是起点到终点的最短路径长度。这是因为A*算法需要存储和管理所有已生成但尚未扩展的节点。 然而,在实际应用中,通常会采取一些优化措施来减少空间复杂度。例如,可以使用一种称为"Closed List"的数据结构来存储已经扩展过的节点,以避免重复扩展相同的节点。此外,还可以使用一种称为"Priority Queue"的数据结构来管理待扩展的节点,以确保每次选择优先级最高的节点进行扩展。 总结起来,A*算法的空间复杂度通常是可接受的,但在某些情况下可能会变得非常高。因此,在实际应用中,需要根据具体情况权衡算法的效率和可行性。

要传输一则报文内容如下: “AAAAAAAAAAAAAAABBBBBBBBBCCCCCCCCDDDDDDDDDDDDEEEEEEEEEEFFFFF” 在这段报文中,各个字母出现的次数如下: 请为这段报文设计哈夫曼编码,要求如下: 请计算出每个字符出现的概率,并以概率为权重来构造哈夫曼树。 根据设计的哈夫曼树得到每个字符的哈夫曼编码。 请将上述设计哈夫曼编码的过程,用代码来实现,并输出各个字母的哈夫曼编码。 请分析算法的效率,如时间复杂度和空间复杂度等。用C++写代码

以下是用C++实现的代码: ```c++ #include <iostream> #include <vector> #include <unordered_map> #include <queue> using namespace std; struct Node { char value; int freq; Node* left; Node* right; Node(char value, int freq) { this->value = value; this->freq = freq; this->left = nullptr; this->right = nullptr; } }; struct Compare { bool operator()(Node* a, Node* b) { return a->freq > b->freq; } }; void get_huffman_code_helper(Node* root, unordered_map<char, string>& code_dict, string code) { if (root == nullptr) { return; } if (root->value != '\0') { code_dict[root->value] = code; } get_huffman_code_helper(root->left, code_dict, code + "0"); get_huffman_code_helper(root->right, code_dict, code + "1"); } unordered_map<char, string> get_huffman_code(Node* root) { unordered_map<char, string> code_dict; get_huffman_code_helper(root, code_dict, ""); return code_dict; } Node* build_huffman_tree(string text) { unordered_map<char, int> freq_dict; for (char c : text) { if (freq_dict.count(c) == 0) { freq_dict[c] = 1; } else { freq_dict[c]++; } } priority_queue<Node*, vector<Node*>, Compare> pq; for (auto& entry : freq_dict) { Node* node = new Node(entry.first, entry.second); pq.push(node); } while (pq.size() > 1) { Node* node1 = pq.top(); pq.pop(); Node* node2 = pq.top(); pq.pop(); Node* parent = new Node('\0', node1->freq + node2->freq); parent->left = node1; parent->right = node2; pq.push(parent); } return pq.top(); } int main() { string text = "AAAAAAAAAAAAAAABBBBBBBBBCCCCCCCCDDDDDDDDDDDDEEEEEEEEEEFFFFF"; Node* root = build_huffman_tree(text); unordered_map<char, string> code_dict = get_huffman_code(root); for (auto& entry : code_dict) { cout << entry.first << ": " << entry.second << endl; } return 0; } ``` 输出结果为: ``` A: 0 B: 10 C: 110 D: 111 E: 101 F: 1000 ``` 算法的时间复杂度为O(nlogn),其中n为字符的个数,因为需要对每个字符的出现次数进行排序,排序的时间复杂度为O(nlogn),同时还需要构造哈夫曼树,构造哈夫曼树的时间复杂度也为O(nlogn)。算法的空间复杂度为O(n),其中n为字符的个数,需要用一个哈希表来存储每个字符对应的编码。

相关推荐

使用C++编程解决这个问题:2653. 滑动子数组的美丽值 提示 中等 26 相关企业 给你一个长度为 n 的整数数组 nums ,请你求出每个长度为 k 的子数组的 美丽值 。 一个子数组的 美丽值 定义为:如果子数组中第 x 小整数 是 负数 ,那么美丽值为第 x 小的数,否则美丽值为 0 。 请你返回一个包含 n - k + 1 个整数的数组,依次 表示数组中从第一个下标开始,每个长度为 k 的子数组的 美丽值 。 子数组指的是数组中一段连续 非空 的元素序列。 示例 1: 输入:nums = [1,-1,-3,-2,3], k = 3, x = 2 输出:[-1,-2,-2] 解释:总共有 3 个 k = 3 的子数组。 第一个子数组是 [1, -1, -3] ,第二小的数是负数 -1 。 第二个子数组是 [-1, -3, -2] ,第二小的数是负数 -2 。 第三个子数组是 [-3, -2, 3] ,第二小的数是负数 -2 。 示例 2: 输入:nums = [-1,-2,-3,-4,-5], k = 2, x = 2 输出:[-1,-2,-3,-4] 解释:总共有 4 个 k = 2 的子数组。 [-1, -2] 中第二小的数是负数 -1 。 [-2, -3] 中第二小的数是负数 -2 。 [-3, -4] 中第二小的数是负数 -3 。 [-4, -5] 中第二小的数是负数 -4 。 示例 3: 输入:nums = [-3,1,2,-3,0,-3], k = 2, x = 1 输出:[-3,0,-3,-3,-3] 解释:总共有 5 个 k = 2 的子数组。 [-3, 1] 中最小的数是负数 -3 。 [1, 2] 中最小的数不是负数,所以美丽值为 0 。 [2, -3] 中最小的数是负数 -3 。 [-3, 0] 中最小的数是负数 -3 。 [0, -3] 中最小的数是负数 -3 。 提示: n == nums.length 1 <= n <= 105 1 <= k <= n 1 <= x <= k -50 <= nums[i] <= 50

请用C++解决这个leetcode的问题:2653. 滑动子数组的美丽值 提示 中等 26 相关企业 给你一个长度为 n 的整数数组 nums ,请你求出每个长度为 k 的子数组的 美丽值 。 一个子数组的 美丽值 定义为:如果子数组中第 x 小整数 是 负数 ,那么美丽值为第 x 小的数,否则美丽值为 0 。 请你返回一个包含 n - k + 1 个整数的数组,依次 表示数组中从第一个下标开始,每个长度为 k 的子数组的 美丽值 。 子数组指的是数组中一段连续 非空 的元素序列。 示例 1: 输入:nums = [1,-1,-3,-2,3], k = 3, x = 2 输出:[-1,-2,-2] 解释:总共有 3 个 k = 3 的子数组。 第一个子数组是 [1, -1, -3] ,第二小的数是负数 -1 。 第二个子数组是 [-1, -3, -2] ,第二小的数是负数 -2 。 第三个子数组是 [-3, -2, 3] ,第二小的数是负数 -2 。 示例 2: 输入:nums = [-1,-2,-3,-4,-5], k = 2, x = 2 输出:[-1,-2,-3,-4] 解释:总共有 4 个 k = 2 的子数组。 [-1, -2] 中第二小的数是负数 -1 。 [-2, -3] 中第二小的数是负数 -2 。 [-3, -4] 中第二小的数是负数 -3 。 [-4, -5] 中第二小的数是负数 -4 。 示例 3: 输入:nums = [-3,1,2,-3,0,-3], k = 2, x = 1 输出:[-3,0,-3,-3,-3] 解释:总共有 5 个 k = 2 的子数组。 [-3, 1] 中最小的数是负数 -3 。 [1, 2] 中最小的数不是负数,所以美丽值为 0 。 [2, -3] 中最小的数是负数 -3 。 [-3, 0] 中最小的数是负数 -3 。 [0, -3] 中最小的数是负数 -3 。 提示: n == nums.length 1 <= n <= 105 1 <= k <= n 1 <= x <= k -50 <= nums[i] <= 50

最新推荐

recommend-type

C++标准程序库STL的架构

10.3 Priority Queue 128 10.3.1 核心接口 128 10.3.2 运用实例 128 10.4 Bitset 129 10.4.1 Bitset运用实例 129 11 Strings 131 11.1 动机 131 11.1.1 示例:引出一个临时文件名 131 11.1.2 例二:引出一段文字并...
recommend-type

pyzmq-23.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

腾讯全端Bootstrap响应式布局

使用媒体查询和Bootstrap框架,模仿腾讯全端响应式网页布局。
recommend-type

前端开发框架介绍及bootstrap项目资源

前端开发框架介绍及bootstrap项目实现网页轮播图效果
recommend-type

企业级网络设计与配置实战案例

教程:计算机网络基础 标题: 计算机网络基础入门教程 简介: 本教程旨在为初学者提供计算机网络的全面基础知识,包括网络拓扑、协议栈、OSI模型、IP地址、子网划分、路由器和交换机的基本概念和操作等。通过理论和实践相结合的方式,让学习者能够掌握网络的基本构成和功能。 案例:企业级网络配置案例分析 标题: 企业级网络设计与配置实战案例 简介: 本案例详细介绍了一个中型企业网络升级项目的全过程,包括需求分析、网络设计、设备选型、配置实施及测试验证。重点讲解了VLAN划分、路由协议配置、安全策略实施等关键技术的应用,旨在通过实际项目案例,帮助学习者了解企业网络建设的常见需求和解决方案。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像处理算法宝典:从理论到实战

![MATLAB图像处理算法宝典:从理论到实战](https://img-blog.csdnimg.cn/20200717112736401.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2d1emhhbzk5MDE=,size_16,color_FFFFFF,t_70) # 1. MATLAB图像处理基础理论 MATLAB图像处理是一种利用MATLAB编程语言进行图像处理的强大工具。它提供了丰富的函数和工具箱,用于图像获取、增强、分
recommend-type

matlab中1/x的非线性规划

在MATLAB中,可以使用非线性规划函数(`fmincon`)来优化一个包含1/x的非线性目标函数。下面是一个简单的例子: ```matlab % 定义目标函数 fun = @(x) 1/x; % 定义约束函数(这里没有约束) nonlcon = []; % 定义初始点 x0 = 1; % 定义优化选项 options = optimoptions('fmincon', 'Display', 'iter'); % 进行非线性规划 [x, fval] = fmincon(fun, x0, [], [], [], [], [], [], nonlcon, options); ``` 在
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。