经过指定的中间节点集的最短路径算法python代码
时间: 2023-08-21 20:00:33 浏览: 146
下面是一个使用Dijkstra算法来寻找从起点到终点的最短路径的Python代码示例,其中经过了指定的中间节点集。
```python
import heapq
def shortest_path(graph, start, end, nodes):
distances = {node: float('inf') for node in graph}
distances[start] = 0
queue = [(0, start)]
while queue:
current_distance, current_node = heapq.heappop(queue)
if current_distance > distances[current_node]:
continue
for neighbor, weight in graph[current_node]:
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(queue, (distance, neighbor))
path = []
for node in nodes:
if distances[node] == float('inf'):
return None
path.append(node)
return path
# 示例图示
graph = {
'A': [('B', 2), ('C', 5)],
'B': [('A', 2), ('C', 2), ('D', 1)],
'C': [('A', 5), ('B', 2), ('D', 3), ('E', 1)],
'D': [('B', 1), ('C', 3), ('E', 1)],
'E': [('C', 1), ('D', 1)]
}
start = 'A'
end = 'E'
nodes = ['B', 'C', 'D']
path = shortest_path(graph, start, end, nodes)
if path:
print(f"Shortest path from {start} to {end} via {nodes}: {' -> '.join([start] + path + [end])}")
else:
print("Path doesn't exist.")
```
该代码使用了一个字典来表示图,其中键是节点,值是该节点与其他节点的连接以及对应的权重。算法使用了一个优先队列来存储节点,以便按照距离的顺序进行处理。在算法的最后,将返回从起点到终点经过中间节点集的最短路径。如果路径不存在,则返回None。
阅读全文