如何在Hadoop MapReduce中,利用Java API构建一个支持在线学习功能的WordCount程序,并在伪分布式集群模式下运行?请提供详细步骤和代码示例。
时间: 2024-11-13 19:34:49 浏览: 28
在处理大数据的环境中,Hadoop MapReduce结合Java API提供了一个强大的编程模型来实现分布式计算。为了构建一个支持在线学习功能的WordCount程序,我们需要理解如何在伪分布式集群模式下编写和运行MapReduce任务。以下是详细步骤和代码示例:
参考资源链接:[Hadoop MapReduce详解:从WordCount到工作流](https://wenku.csdn.net/doc/2orhbm0ac5?spm=1055.2569.3001.10343)
首先,确保你的环境已经安装并配置好了Hadoop,并且处于伪分布式模式。这一步骤对于能够在单节点上模拟分布式计算至关重要。
然后,创建一个Java类实现MapReduce程序。在这个例子中,我们将实现`Mapper`和`Reducer`类,并定义`main`方法来配置`Job`。
1. **定义Mapper类**:
```java
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
```
2. **定义Reducer类**:
```java
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
```
3. **配置Job**:
```java
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf,
参考资源链接:[Hadoop MapReduce详解:从WordCount到工作流](https://wenku.csdn.net/doc/2orhbm0ac5?spm=1055.2569.3001.10343)
阅读全文