将以下代码转换为python:if length(elite_x)~=1 best_x=randsample(elite_x,1); else best_x=elite_x; end elite=GSApop0(best_x,:); %精英个体 if elitefit<Fbest %判断当前种群最优解是否优于全局最优解 Fbest=elitefit; Lbest=elite; Fbestc=fitness(best_x,2); end
时间: 2024-04-11 21:28:50 浏览: 267
将给定的代码转换为Python的代码如下:
```python
if len(elite_x) != 1:
best_x = np.random.choice(elite_x, 1)[0]
else:
best_x = elite_x
elite = GSApop0[best_x, :] # 精英个体
if elitefit < Fbest:
Fbest = elitefit
Lbest = elite
Fbestc = fitness[best_x, 1]
```
在这段代码中,假设 `elite_x` 是一个已定义的变量或数组。根据 `elite_x` 的长度判断条件,如果不等于1,则使用 `np.random.choice(elite_x, 1)` 随机选择一个元素作为 `best_x`,否则直接将 `elite_x[0]` 赋值给 `best_x`。然后,根据 `best_x` 获取 `GSApop0` 中的精英个体,并将其赋值给变量 `elite`。最后,如果 `elitefit` 小于 `Fbest`,则更新 `Fbest`、`Lbest` 和 `Fbestc` 的值。
相关问题
将以下代码转换为python:[elitefit,elite_x]=min(fitness(:,1)); if length(elite_x)~=1 best_x=randsample(elite_x,1); else best_x=elite_x; end
以下是将给定代码转换为Python的结果:
```python
elitefit, elite_x = np.min(fitness[:, 0]), np.argwhere(fitness[:, 0] == np.min(fitness[:, 0])).flatten()
if len(elite_x) != 1:
best_x = np.random.choice(elite_x, 1)[0]
else:
best_x = elite_x[0]
```
在上述代码中,假设 `fitness` 是一个包含适应度值的数组。`np.min(fitness[:, 0])` 返回适应度值中的最小值,而 `np.argwhere(fitness[:, 0] == np.min(fitness[:, 0]))` 返回所有等于最小值的索引。`np.flatten()` 用于将索引数组展平为一维。如果 `elite_x` 的长度不等于1,则使用 `np.random.choice(elite_x, 1)` 随机选择一个元素作为 `best_x`,否则直接将 `elite_x[0]` 赋值给 `best_x`。
将以下代码转换为python:%精英替换 indexworst=find(fitness==max(fitness)); if length(indexworst)>1 indexworst=randsample(indexworst,1); end GApop1(indexworst,:)=elite(gen-1,:); fitness(indexworst,1)=elitefit(gen-1,:); fitness1=1./fitness; %精英保留 indexmin=find(fitness==min(fitness)); if length(indexmin)>1 indexmin=randsample(indexmin,1); end elite(gen,:)=GApop1(indexmin,:); %费用最小,适应度最大个体序号为indexmin elitefit(gen,:)=fitness(indexmin,:); bestfit(gen,1)=min(fitness); indexmin=find(fitness==min(fitness)); if length(indexmin)>1 indexmin=randsample(indexmin,1); end bestChrom(gen,:)=GApop1(indexmin,:); bestT(gen,:)=ztime(GApop1(indexmin,:),M,N,Tn0,Tn1,Q,ST0); bestT(gen,1) GApop0=GApop1; end bestindividual=bestChrom(maxgen,:) best=bestfit(maxgen,1) % plot(bestfit,'MarkerFaceColor','red','LineWidth',1); hold on set(gca,'color','none'); plot(bestfit(2:maxgen),'k','LineWidth',1); title('收敛曲线图(每一代最优费用)'); ylabel('最优费用'); xlabel('迭代次数'); toc;
```
indexworst = np.where(fitness == np.max(fitness))[0]
if len(indexworst) > 1:
indexworst = np.random.choice(indexworst, 1)
GApop1[indexworst[0], :] = elite[gen-1, :]
fitness[indexworst[0], 0] = elitefit[gen-1, 0]
fitness1 = 1 / fitness
indexmin = np.where(fitness == np.min(fitness))[0]
if len(indexmin) > 1:
indexmin = np.random.choice(indexmin, 1)
elite[gen, :] = GApop1[indexmin[0], :]
elitefit[gen, :] = fitness[indexmin[0], :]
bestfit[gen, 0] = np.min(fitness)
indexmin = np.where(fitness == np.min(fitness))[0]
if len(indexmin) > 1:
indexmin = np.random.choice(indexmin, 1)
bestChrom[gen, :] = GApop1[indexmin[0], :]
bestT[gen, :] = ztime(GApop1[indexmin[0], :], M, N, Tn0, Tn1, Q, ST0)
bestT[gen, 0]
GApop0 = GApop1
bestindividual = bestChrom[maxgen, :]
best = bestfit[maxgen, 0]
plt.plot(bestfit, markerfacecolor='red', linewidth=1)
plt.hold(True)
plt.gca().set_color('none')
plt.plot(bestfit[1:maxgen], 'k', linewidth=1)
plt.title('收敛曲线图(每一代最优费用)')
plt.ylabel('最优费用')
plt.xlabel('迭代次数')
plt.show()
```
阅读全文