np.dot(X.T, (np.dot(X, theta) - y))

时间: 2024-06-16 16:02:42 浏览: 136
np.dot(X.T, (np.dot(X, theta) - y))是一个常见的线性回归中的计算步骤,用于计算误差的梯度。下面是对该表达式的介绍: 1. np.dot(X, theta)表示将特征矩阵X与参数向量theta进行矩阵乘法运算,得到预测值。 2. (np.dot(X, theta) - y)表示预测值与实际值之间的差异,即误差。 3. np.dot(X.T, (np.dot(X, theta) - y))表示将特征矩阵X的转置与误差向量进行矩阵乘法运算,得到误差的梯度。 这个表达式的目的是计算误差的梯度,用于更新参数theta,以使得预测值与实际值之间的差异最小化,从而实现线性回归模型的拟合。
相关问题

import numpy as np from scipy.optimize import fmin_tnc # 定义目标函数 def negative_log_likelihood(theta, X, y): # 计算模型预测值 y_pred = np.dot(X, theta) # 计算负对数似然函数 neg_log_likelihood = -np.sum(y*np.log(y_pred) + (1-y)*np.log(1-y_pred)) return neg_log_likelihood # 定义计算梯度的函数 def gradient(theta, X, y): # 计算模型预测值 y_pred = np.dot(X, theta) # 计算梯度 grad = np.dot(X.T, y_pred - y) return grad # 定义计算海森矩阵的函数 def hessian(theta, X, y): # 计算模型预测值 y_pred = np.dot(X, theta) # 计算海森矩阵 H = np.dot(X.T * y_pred * (1 - y_pred), X) return H # 定义信赖域和局部线性近似方法 def trust_region_newton(theta_init, X, y, radius=0.1, max_iter=100): theta = theta_init for i in range(max_iter): # 计算梯度和海森矩阵 grad = gradient(theta, X, y) H = hessian(theta, X, y) # 使用信赖域方法求解更新量 p = fmin_tnc(func=lambda p: np.dot(grad, p) + 0.5*np.dot(p.T, np.dot(H, p)), x0=np.zeros_like(theta), fprime=lambda p: np.dot(H, p) + grad, args=(X, y), bounds=None) # 更新参数 theta += p[0] return theta # 生成随机数据集 n_samples, n_features = 1000, 10 X = np.random.normal(size=(n_samples, n_features)) y = np.random.binomial(1, 0.5, size=n_samples) # 初始化参数 theta_init = np.zeros(n_features) # 求解最大似然估计 theta_ml = trust_region_newton(theta_init, X, y) print("最大似然估计的参数为:", theta_ml)

这段代码主要是用信赖域和局部线性近似方法求解对数几率回归的最大似然估计参数。首先,定义了目标函数negative_log_likelihood,计算给定参数theta下对数几率回归模型的负对数似然函数值。然后,定义了计算梯度的函数gradient和计算海森矩阵的函数hessian。接着,定义了trust_region_newton函数,它使用信赖域方法求解更新量,并更新参数theta。最后,生成了一个随机数据集,初始化参数theta_init,调用trust_region_newton函数求解最大似然估计参数theta_ml,并输出结果。 值得注意的是,此处对数几率回归模型的目标函数与梯度、海森矩阵的计算方式和一般的线性回归不同,需要使用sigmoid函数进行转换。具体来说,模型预测值为sigmoid函数(np.dot(X, theta)),而负对数似然函数则是对y_pred进行了sigmoid函数的逆变换,即-y*np.log(y_pred) - (1-y)*np.log(1-y_pred)。

error = h - y gradient = np.dot(X.T, error) / y.size theta -= alpha * gradient什么意思

这段代码是梯度下降算法的一部分,用于更新模型参数。具体解释如下: - error = h - y:计算预测值h与实际值y的差异,即误差。 - gradient = np.dot(X.T, error) / y.size:计算误差对于每个特征的梯度,即损失函数对于模型参数的导数。这里使用了矩阵乘法,将误差乘以输入特征矩阵X的转置,再除以样本数量y.size。 - theta -= alpha * gradient:使用学习率alpha乘以梯度gradient,得到参数更新量,然后用该量更新模型参数theta。这里使用了就地减法(in-place subtraction),即直接将更新量减去theta,然后将结果赋值给theta。
阅读全文

相关推荐

# 定义昂贵的函数 def expensive_func(t): return np.sum(t**2 - 10*np.cos(2*np.pi*t) + 10) # 定义高斯核函数 def gaussian_kernel(x, y, theta): return np.exp(-theta * cdist(x, y)**2) # 定义对数似然函数 def log_likelihood(params, x, y): theta, sigma = params k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return -np.inf alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) return -0.5*y.T.dot(alpha) - np.sum(np.log(np.diag(L))) - 0.5*len(x)*np.log(2*np.pi) # 定义预测函数 def predict(x, y, x0, theta, sigma): k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) k0 = gaussian_kernel(x, x0.reshape(1, -1), theta) k00 = gaussian_kernel(x0.reshape(1, -1), x0.reshape(1, -1), theta) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return np.nan, np.nan alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) mu = k0.T.dot(alpha) v = k00 - k0.T.dot(np.linalg.solve(L.T, np.linalg.solve(L, k0))) return mu, v # 生成随机数据 np.random.seed(666) X = np.random.uniform(-20, 20, size=(200, 10)) y = np.array([expensive_func(x) for x in X]) # 优化超参数 initial_params = [1, 1] bounds = [(1e-5, None), (1e-5, None)] res = minimize(lambda params: -log_likelihood(params, X, y), initial_params, bounds=bounds) theta, sigma = res.x # 在随机点上进行预测 x0 = np.random.uniform(-20, 20, size=(1, 10)) mu, v = predict(X, y, x0, theta, sigma) # 计算误差 exact_val = expensive_func(x0) error = (exact_val - mu)**2 print("预测误差:", error) print("预测方差:", v)注释一下

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

最新推荐

recommend-type

Python实现的线性回归算法示例【附csv文件下载】

theta_n = dot(dot(inv(dot(x_train.T, x_train)), x_train.T), y_train) y_pre = dot(x_test, theta_n) mse = np.average((y_test - y_pre) ** 2) return theta_n, y_pre, mse ``` 接着,我们介绍梯度下降算法...
recommend-type

A级景区数据文件json

A级景区数据文件json
recommend-type

使用Java编写的坦克大战小游戏.zip学习资料

python 使用Java编写的坦克大战小游戏.zip学习资料
recommend-type

【python毕设】p073基于Spark的温布尔登特色赛赛事数据分析预测及算法实现_flask(5).zip

项目资源包含:可运行源码+sql文件+; python3.7+flask+spark+mysql5.7+vue 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 项目具有较高的学习借鉴价值,也可拿来修改、二次开发。 有任何使用上的问题,欢迎随时与博主沟通,博主看到后会第一时间及时解答。 系统是一个很好的项目,结合了后端服务(flask)和前端用户界面(Vue.js)技术,实现了前后端分离。 后台路径地址:localhost:8080/项目名称/admin/dist/index.html 前台路径地址:localhost:8080/项目名称/front/index.html
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依