pandas删除列简写
时间: 2023-11-21 07:58:06 浏览: 148
pandas删除列的简写是使用drop()函数。具体操作如下:
```python
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
# 删除列B
df.drop('B', axis=1, inplace=True)
# 输出结果
print(df)
```
输出结果为:
```
A C
0 1 7
1 2 8
2 3 9
```
其中,`axis=1`表示删除列,`inplace=True`表示在原DataFrame上进行修改。如果不设置`inplace=True`,则需要将结果重新赋值给原变量,例如`df = df.drop('B', axis=1)`。
相关问题
pandas 删除列
在 Pandas 中,我们可以使用 `drop()` 方法来删除 DataFrame 中的列。下面是两种常用的方法:
方法一:使用 `drop()` 方法
```python
import pandas as pd
# 创建一个 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
# 删除列
df = df.drop('C', axis=1)
# 输出结果
print(df)
```
输出结果:
```
A B
0 1 4
1 2 5
2 3 6
```
方法二:使用 `del` 关键字
```python
import pandas as pd
# 创建一个 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
# 删除列
del df['C']
# 输出结果
print(df)
```
输出结果:
```
A B
0 1 4
1 2 5
2 3 6
```
pandas删除列索引
在pandas中,可以使用`drop()`方法来删除列索引。`drop()`方法可以接受一个参数`labels`,用于指定删除的列索引名称索引列表。此外,还可以使用axis`参数来指定删除的方向,默认为0表示按行删除,设置为1表示按列删除。
面是一个示例代码,演示如使用`drop()`方法删除列索引:
```python
import pandas as pd
# 创建一个示例DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)
# 删除列索引为'B'
df = df.drop('B', axis=1)
# 打印删除后的DataFrame
print(df)
```
输出结果为:
```
A C
0 1 7
1 2 8
2 3 9
```
阅读全文
相关推荐
















