x_train, y_train, x_test, y_test = map( torch.tensor, (x_train, train_y, x_test, test_y))(7) map 函数Python中很常使用到,在这里的作用是什么?

时间: 2023-09-23 10:05:21 浏览: 41
### 回答1: `map()` 函数是 Python 内置的高阶函数,它接受一个函数和一个或多个序列作为参数,然后将该函数依次作用于每个序列的对应元素上,并返回一个迭代器。在这里,`map()` 函数的作用是将 `torch.tensor()` 函数依次作用于 `x_train`、`train_y`、`x_test` 和 `test_y` 四个序列的每个元素上,并将结果组成一个迭代器返回。 具体来说,`torch.tensor()` 函数是将一个序列转换为 PyTorch 的 `tensor` 类型。通过使用 `map()` 函数,我们可以将四个序列依次转换为 `tensor` 类型,并将转换后的结果以元组的形式返回,即 `(torch.Tensor(x_train), torch.Tensor(train_y), torch.Tensor(x_test), torch.Tensor(test_y))`。这样做的好处是可以方便地进行后续的数据处理和模型训练。 ### 回答2: 在这段代码中,`map`函数用于将`torch.tensor`函数应用于四个变量`x_train, y_train, x_test, y_test`。`map`函数在Python中常用于对一个序列(或多个序列)的每个元素进行相同的操作,返回一个新的列表。 在这个例子中,`map`函数被用于对四个变量进行`torch.tensor`函数的操作。`torch.tensor`函数是PyTorch框架中创建张量的函数,用于将输入数据转换为张量。 通过应用`torch.tensor`函数,四个变量`x_train, y_train, x_test, y_test`被转换为PyTorch中的张量对象,以便在后续的机器学习模型训练和测试中使用。 ### 回答3: 在这里,map函数的作用是将一个函数应用于一个或多个可迭代对象的对应元素,返回一个结果迭代器。具体来说,使用map函数对(x_train, train_y, x_test, test_y)这个元组进行操作,将其中的每个元素都应用torch.tensor函数进行转换,然后返回转换后的结果。 在代码中,x_train、train_y、x_test、test_y分别表示训练集的输入特征、训练集的标签、测试集的输入特征和测试集的标签。通过map函数将这些数据都应用torch.tensor函数,将它们转换为torch.tensor类型的张量,使得这些数据可以被传入神经网络进行训练和测试。 使用map函数可以简化代码,避免编写多个循环进行元素转换操作,提高代码的简洁性和可读性。它在处理数据的预处理阶段很常见,可以对数据进行批量处理、转换和规范化等操作,方便快捷地将数据准备好用于模型训练和评估。

相关推荐

def compute_mAP(trn_binary, tst_binary, trn_label, tst_label): """ compute mAP by searching testset from trainset https://github.com/flyingpot/pytorch_deephash """ for x in trn_binary, tst_binary, trn_label, tst_label: x.long() AP = [] Ns = torch.arange(1, trn_binary.size(0) + 1) Ntest = torch.arange(1, tst_binary.size(0) + 1) print("trn_binary.size(0):",trn_binary.size(0)) print("tst_binary.size(0):", tst_binary.size(0)) print("Ns:",Ns) print("Ns:", Ntest) # print("Ns(train):",Ns) for i in range(tst_binary.size(0)): query_label, query_binary = tst_label[i], tst_binary[i] # 把测试图像编码和标签赋值给->查询图像编码和标签 _, query_result = torch.sum((query_binary != trn_binary).long(), dim=1).sort() # 判断查询图像编码是否等于训练图像编码,相等的总和,并排序。 print("查询标签-----------------------------------------------------:",query_label) print("查询二进制:", query_binary) print(len(query_binary)) print("查询结果:",query_result) print("是否相等:",query_binary != trn_binary) print("查询结果1:", torch.sum((query_binary != trn_binary).long(), dim=1)) print("查询结果2:",torch.sum((query_binary != trn_binary).long(), dim=1).sort()) correct = (query_label == trn_label[query_result]).float() # 正确匹配的二进制编码个数 print("trn_label[query_result]:",trn_label[query_result]) num_ones = torch.sum(correct == 1) print("查询正确的个数:",num_ones) print("查询正确:",correct) P = torch.cumsum(correct, dim=0) / Ns print("torch.cumsum(correct, dim=0)",torch.cumsum(correct, dim=0)) print("查询正确/Ns",torch.Tensor(P)) #每个位置的精度 P AP.append(torch.sum(P * correct) / torch.sum(correct)) # print("---:",AP) acc = num_ones / tst_binary.size(0) print("ACC================================== ", acc) mAP = torch.mean(torch.Tensor(AP)) return mAP 请问怎么将这段代码改成EER评估指标的代码

最新推荐

recommend-type

【车牌识别】 GUI BP神经网络车牌识别(带语音播报)【含Matlab源码 668期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4
recommend-type

3文件需求申请单.xls

3文件需求申请单.xls
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这