python 非线性回归置信区间

时间: 2023-10-17 20:36:15 浏览: 69
要在Python中计算非线性回归的置信区间,你可以使用统计模块statsmodels中的函数。这个模块提供了一个称为OLS(Ordinary Least Squares)的方法来进行回归分析,并且可以计算置信区间。下面是一个示例代码,展示了如何使用statsmodels来计算非线性回归的置信区间: ``` import numpy as np import statsmodels.api as sm # 定义自变量x和因变量y的数据 x = (20 - np.arange(20))**2 y = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 添加常数列 X = sm.add_constant(x) # 使用OLS方法进行回归分析 model = sm.OLS(y, X) # 拟合回归模型 results = model.fit() # 计算预测值和置信区间 predictions = results.get_prediction(X) predicted_values = predictions.predicted_mean confidence_interval = predictions.conf_int() # 打印预测值和置信区间 print("Predicted Values:", predicted_values) print("Confidence Interval:", confidence_interval) ``` 在这个示例中,首先定义了自变量`x`和因变量`y`的数据。然后使用`sm.add_constant()`函数为自变量添加常数列,这是因为`OLS`方法需要常数项。接下来,使用`sm.OLS()`方法创建了回归模型,并使用`fit()`方法拟合了模型。最后,使用`get_prediction()`函数计算了预测值和置信区间,其中`predicted_mean`表示预测值,`conf_int()`表示置信区间。 请注意,这只是一个示例代码,并且假设你已经安装了`statsmodels`模块。你需要根据你的具体问题和数据进行相应的调整和修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [用Python绘制回归线、置信区间和预测区间](https://blog.csdn.net/weixin_34377697/article/details/112830439)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [python多元(非)线性回归及置信区间的绘制](https://blog.csdn.net/m0_46268055/article/details/125362141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

最新推荐

python 线性回归分析模型检验标准--拟合优度详解

今天小编就为大家分享一篇python 线性回归分析模型检验标准--拟合优度详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

Python求解正态分布置信区间教程

今天小编就为大家分享一篇Python求解正态分布置信区间教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

8种用Python实现线性回归的方法对比详解

主要介绍了8种用Python实现线性回归的方法对比详解,说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的,需要的朋友...

关于多元线性回归分析——Python&SPSS

原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察。 import numpy import pandas as pd import matplotlib.pyplot as plt ...我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/

基于线性回归的广告投入销售额预测

目录基于线性回归的广告投入销售额预测前言基于线性回归的广告投入销量预测导入相关的库读取并查看数据基本情况查看数据维度查看数据基本统计情况数据可视化经典线性模型建立划分自变量与因变量划分训练集和测试集...

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx