从文件夹中导入图片 构建VGG16模型(可以使用课上的MyConv2D和MyMaxPool2D模块) 安装torchinfo,使用torchinfo.summary()打印输入大小是(64, 3, 224, 224)时候的模型结构
时间: 2024-10-28 09:12:38 浏览: 23
在Python中,特别是在深度学习框架如PyTorch中,要从文件夹中导入图片并构建VGG16模型,你需要先做一些准备工作:
1. 导入必要的库:
```python
import torch
import torchvision
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.models.vgg import VGG
from myconv2d import MyConv2D
from mymaxpool2d import MyMaxPool2D
from torchinfo import summary
```
这里假设`myconv2d.py`和`mymaxpool2d.py`是你自定义的卷积层和池化层模块。
2. 定义数据处理函数和加载图像的类:
```python
class ImageDataset(Dataset):
def __init__(self, img_folder, transform=None):
self.imgs = list(sorted(os.listdir(img_folder)))
self.transform = transform
def __len__(self):
return len(self.imgs)
def __getitem__(self, idx):
img_path = os.path.join(img_folder, self.imgs[idx])
img = Image.open(img_path).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img
# 图像预处理(归一化、缩放等)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
data_loader = DataLoader(ImageDataset(img_folder), batch_size=64, shuffle=True, num_workers=4, transform=transform)
```
3. 构建VGG16模型,并替换原卷积层和池化层:
```python
vgg = VGG(make_layers([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512]))
# 替换原卷积层和池化层
for name, module in vgg.named_modules():
if isinstance(module, (torch.nn.Conv2d, torch.nn.MaxPool2d)):
setattr(vgg, name, MyConv2D() if isinstance(module, torch.nn.Conv2d) else MyMaxPool2D())
model = vgg
```
4. 打印模型结构信息:
```python
summary(model, input_size=(64, 3, 224, 224))
```
这将显示一个关于VGG16模型的结构概览,包括每层的输出维度、参数数量等信息。
阅读全文