写一个STM32串口驱动程序

时间: 2023-09-26 11:06:56 浏览: 99
### 回答1: 很高兴为您服务,我可以为您提供一个STM32串口驱动程序的示例: #include <stm32f10x.h> //Define USART1 #define USART1_DR_Base 0x40013804 #define USART1_BRR 0x40013808 #define USART1_CR1 0x4001380C #define USART1_CR2 0x40013810 #define USART1_CR3 0x40013814 #define USART1_GTPR 0x40013818 //Define USART1 Baudrate #define USART1_Baudrate 9600 //Define USART1 GPIO #define USART1_GPIO_TX GPIOA,GPIO_Pin_9 #define USART1_GPIO_RX GPIOA,GPIO_Pin_10 //Define USART1 GPIO Mode #define USART1_GPIO_Mode GPIO_Mode_AF_PP //Define USART1 GPIO Speed #define USART1_GPIO_Speed GPIO_Speed_50MHz //Define USART1 GPIO Remap #define USART1_GPIO_Remap GPIO_Remap_USART1 //Function Prototype void USART1_Init(void); void USART1_SendByte(uint8_t data); uint8_t USART1_ReceiveByte(void); //USART1 Init Function void USART1_Init(void) { //Define Local Variables GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; //Enable USART1 and GPIOA Periph Clock RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); //Configure USART1_TX and USART1_RX Pin GPIO_InitStructure.GPIO_Pin = USART1_GPIO_TX | USART1_GPIO_RX; GPIO_InitStructure.GPIO_Mode = USART1_GPIO_Mode; GPIO_InitStructure.GPIO_Speed = USART1_GPIO_Speed; GPIO_Init(GPIOA, &GPIO_InitStructure); //Remap USART1_TX and USART1_RX GPIO_PinRemapConfig(USART1_GPIO_Remap, ENABLE); //Configure USART1 USART_InitStructure.USART_BaudRate = USART1_Baudrate; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); //Enable USART1 USART_Cmd(USART1, ENABLE); //Configure USART1 NVIC NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } //USART1 Send Byte Function void USART1_SendByte(uint8_t data) { USART_SendData(USART1, data); while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); } //USART1 Receive Byte Function uint8_t USART1_ReceiveByte(void) { while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); return (uint8_t)USART_ReceiveData(USART1); } ### 回答2: STM32是一款集成了多种外设的微控制器,具备强大的串口通信功能。下面是一个简单的STM32串口驱动程序的实现: 首先,需要配置STM32的GPIO引脚作为串口的输入输出引脚。在程序中,可以使用CMSIS库函数来设置引脚功能和模式。 接下来,需要初始化串口。通过设置USARTx寄存器,可以配置波特率、帧格式、停止位、数据位等参数。并使能串口发送和接收功能。 在发送数据时,可以通过USARTx_DR寄存器将数据写入串口发送缓冲区,等待发送。可以使用轮询方式或中断方式发送数据。 在接收数据时,可以通过轮询USARTx_SR寄存器的标志位来判断是否有数据接收。如果有数据接收到,可以通过读取USARTx_DR寄存器来获取接收到的数据。 为了保证数据的完整性和准确性,可以使用中断方式进行接收。通过使能USART接收中断,并实现相应的中断服务函数,在接收到数据时进行处理。 在编写串口驱动程序时,需注意以下几点: 1. 根据所选用的STM32型号和串口模块,查阅对应的参考手册,了解关于串口的寄存器设置、时钟使能和IO配置等相关信息。 2. 根据需求选择合适的波特率、帧格式和数据位数等参数。 3. 注意设置GPIO引脚的输入输出模式、上下拉电阻等。 4. 在发送和接收数据时,需进行错误处理和数据校验,确保数据的正确传输。 5. 可以使用DMA(直接内存访问)来减轻CPU的工作负担,提高数据传输的效率。 以上是一个简单的STM32串口驱动程序的实现步骤和注意事项。当然,实际的驱动程序会更加复杂和详细,涉及到更多的设置和处理。具体的实现方式和细节可能因不同的STM32型号和应用场景而有所差异。 ### 回答3: STM32串口驱动程序是用于控制STM32单片机内部串口模块的程序。下面是一个简单的示例代码: #include "stm32f10x.h" void UART_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; // 使能USART1和GPIOA时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); // 配置USART1的引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置USART1的参数 USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART1, &USART_InitStructure); // 使能USART1 USART_Cmd(USART1, ENABLE); } void UART_SendChar(char ch) { // 等待发送缓冲区为空 while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 发送一个字符 USART_SendData(USART1, ch); } char UART_ReceiveChar(void) { // 等待接收缓冲区有数据 while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); // 读取接收到的字符 return USART_ReceiveData(USART1); } 在这个例子中,我们使用STM32芯片的USART1模块作为串口模块。UART_Init()函数用来初始化串口,配置串口的引脚和参数;UART_SendChar()函数用来发送一个字符;UART_ReceiveChar()函数用来接收一个字符。 在使用该串口驱动程序时,你需要在main函数中先调用UART_Init()函数初始化串口,然后通过调用UART_SendChar()函数发送字符,调用UART_ReceiveChar()函数接收字符。

相关推荐

最新推荐

recommend-type

STM32单片机解码NEC红外控制器C语言程序

2. **地址**:接着是一个32位的地址码,分为正码和反码,用于识别遥控器控制的对象。 3. **数据**:随后是16位的数据码,同样包括正码和反码,表示具体的操作命令。 4. **校验码**:数据的反码与地址的反码进行异或...
recommend-type

lxml-5.0.1-cp37-cp37m-win32.whl

lxml 是一个用于 Python 的库,它提供了高效的 XML 和 HTML 解析以及搜索功能。它是基于 libxml2 和 libxslt 这两个强大的 C 语言库构建的,因此相比纯 Python 实现的解析器(如 xml.etree.ElementTree),lxml 在速度和功能上都更为强大。 主要特性 快速的解析和序列化:由于底层是 C 实现的,lxml 在解析和序列化 XML/HTML 文档时非常快速。 XPath 和 CSS 选择器:支持 XPath 和 CSS 选择器,这使得在文档中查找特定元素变得简单而强大。 清理和转换 HTML:lxml 提供了强大的工具来清理和转换不规范的 HTML,比如自动修正标签和属性。 ETree API:提供了类似于 ElementTree 的 API,但更加完善和强大。 命名空间支持:相比 ElementTree,lxml 对 XML 命名空间提供了更好的支持。
recommend-type

slim-0.5.8-py3-none-any.whl

whl软件包,直接pip install安装即可
recommend-type

【赠】新营销4.0:新营销,云时代(PDF).pdf

【赠】新营销4.0:新营销,云时代(PDF)
recommend-type

codsys的FileOpenSave文件的读取与保存

里面有网盘资料!!!!!有例程,不用担心实现不了。 保证利用codesys的FileOpenSave功能块进行读取和下载文件。 目的:使用FileOpensave进行操作,保证项目的可执行性。
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。