可以帮我实现五子棋的人工智能代码吗
时间: 2023-09-15 20:20:40 浏览: 90
Java五子棋AI实现代码
当然可以!以下是一个基于 Python 语言实现的五子棋人工智能代码:
```python
import numpy as np
# 定义棋盘大小
BOARD_SIZE = 15
# 定义棋盘状态
EMPTY = 0
BLACK = 1
WHITE = 2
# 定义评估函数参数
SCORE = [0, 1, 10, 100, 1000]
# 极小化极大算法
def minimax(board, depth, alpha, beta, is_max):
# 判断是否达到搜索深度或者出现胜负
if depth == 0 or is_win(board):
return evaluate(board)
# 极大节点
if is_max:
max_eval = -np.inf
for i in range(BOARD_SIZE):
for j in range(BOARD_SIZE):
if board[i][j] == EMPTY:
board[i][j] = WHITE
eval = minimax(board, depth-1, alpha, beta, False)
board[i][j] = EMPTY
max_eval = max(max_eval, eval)
alpha = max(alpha, eval)
if beta <= alpha:
break
return max_eval
# 极小节点
else:
min_eval = np.inf
for i in range(BOARD_SIZE):
for j in range(BOARD_SIZE):
if board[i][j] == EMPTY:
board[i][j] = BLACK
eval = minimax(board, depth-1, alpha, beta, True)
board[i][j] = EMPTY
min_eval = min(min_eval, eval)
beta = min(beta, eval)
if beta <= alpha:
break
return min_eval
# Alpha-Beta 剪枝算法
def alphabeta(board, depth, alpha, beta, is_max):
# 判断是否达到搜索深度或者出现胜负
if depth == 0 or is_win(board):
return evaluate(board)
# 极大节点
if is_max:
max_eval = -np.inf
for i in range(BOARD_SIZE):
for j in range(BOARD_SIZE):
if board[i][j] == EMPTY:
board[i][j] = WHITE
eval = alphabeta(board, depth-1, alpha, beta, False)
board[i][j] = EMPTY
max_eval = max(max_eval, eval)
alpha = max(alpha, eval)
if beta <= alpha:
break
return max_eval
# 极小节点
else:
min_eval = np.inf
for i in range(BOARD_SIZE):
for j in range(BOARD_SIZE):
if board[i][j] == EMPTY:
board[i][j] = BLACK
eval = alphabeta(board, depth-1, alpha, beta, True)
board[i][j] = EMPTY
min_eval = min(min_eval, eval)
beta = min(beta, eval)
if beta <= alpha:
break
return min_eval
# 启发式搜索
def heuristic(board):
# 构建搜索队列
queue = []
for i in range(BOARD_SIZE):
for j in range(BOARD_SIZE):
if board[i][j] == EMPTY:
score = evaluate_position(board, i, j)
queue.append((i, j, score))
# 根据评分排序
queue.sort(key=lambda x: x[2], reverse=True)
# 返回评分最高的位置
return queue[0][0], queue[0][1]
# 评估函数
def evaluate(board):
score = 0
for i in range(BOARD_SIZE):
for j in range(BOARD_SIZE):
if board[i][j] == BLACK:
score -= evaluate_position(board, i, j)
elif board[i][j] == WHITE:
score += evaluate_position(board, i, j)
return score
# 位置评估函数
def evaluate_position(board, x, y):
score = 0
for dx in range(-1, 2):
for dy in range(-1, 2):
if dx == 0 and dy == 0:
continue
score += evaluate_direction(board, x, y, dx, dy)
return score
# 方向评估函数
def evaluate_direction(board, x, y, dx, dy):
count = 0
is_blocked = False
for i in range(5):
nx = x + i * dx
ny = y + i * dy
if nx < 0 or ny < 0 or nx >= BOARD_SIZE or ny >= BOARD_SIZE:
is_blocked = True
break
if board[nx][ny] == BLACK:
count += 1
elif board[nx][ny] == WHITE:
is_blocked = True
break
if not is_blocked:
score = SCORE[count]
else:
score = SCORE[count] // 2
return score
# 判断是否出现胜负
def is_win(board):
for i in range(BOARD_SIZE):
for j in range(BOARD_SIZE):
if board[i][j] != EMPTY:
if check_direction(board, i, j, 1, 0) or \
check_direction(board, i, j, 0, 1) or \
check_direction(board, i, j, 1, 1) or \
check_direction(board, i, j, 1, -1):
return True
return False
# 检查方向是否出现连续五子
def check_direction(board, x, y, dx, dy):
count = 1
for i in range(1, 5):
nx = x + i * dx
ny = y + i * dy
if nx < 0 or ny < 0 or nx >= BOARD_SIZE or ny >= BOARD_SIZE:
break
if board[nx][ny] == board[x][y]:
count += 1
else:
break
for i in range(1, 5):
nx = x - i * dx
ny = y - i * dy
if nx < 0 or ny < 0 or nx >= BOARD_SIZE or ny >= BOARD_SIZE:
break
if board[nx][ny] == board[x][y]:
count += 1
else:
break
if count >= 5:
return True
else:
return False
```
在上述代码中,我们实现了极小化极大算法、Alpha-Beta 剪枝算法和启发式搜索等算法,同时也实现了评估函数、位置评估函数和方向评估函数等函数,来评估棋局的优劣程度。
阅读全文