如何对一张图像提取旋转不变均匀lbp特征并显示lbp图谱的matlab代码
时间: 2023-10-17 15:03:04 浏览: 100
以下是一个实现旋转不变均匀LBP特征提取并显示LBP图谱的MATLAB代码:
```MATLAB
% 读取图像
image = imread('image.jpg');
% 将图像转换为灰度图像
gray_image = rgb2gray(image);
% 将灰度图像转换为双精度类型
gray_image = im2double(gray_image);
% 计算LBP特征
radius = 1;
num_neighbors = 8;
lbp_features = extractLBPFeatures(gray_image, 'Radius', radius, 'NumNeighbors', num_neighbors);
% 归一化LBP特征(将特征值归一化到[0, 1]范围内)
lbp_features = lbp_features / sum(lbp_features);
% 将LBP特征重排为旋转不变均匀LBP特征
rotation_invariant_lbp_features = CircularRotationInvariantLBP(lbp_features);
% 显示LBP图谱
lbp_map = LocalBinaryPattern(gray_image, radius, num_neighbors);
figure;
imshow(lbp_map);
title('LBP Map');
function rotation_invariant_lbp = CircularRotationInvariantLBP(lbp_features)
rotation_invariant_lbp = zeros(1, 59);
rotation_invariant_lbp(1) = sum(lbp_features(1:9));
for i = 2:8
rotation_invariant_lbp(i) = sum(lbp_features((i-1)*8+1:i*8));
rotation_invariant_lbp(9) = rotation_invariant_lbp(9) + rotation_invariant_lbp(i);
end
rotation_invariant_lbp = rotation_invariant_lbp / sum(rotation_invariant_lbp);
end
function lbp_map = LocalBinaryPattern(image, radius, num_neighbors)
[height, width] = size(image);
lbp_map = zeros(height, width);
for i = radius+1:height-radius
for j = radius+1:width-radius
center_pixel = image(i, j);
binary_code = '';
for k = 0:num_neighbors-1
neighbor_x = i + radius * cos(2*pi*k/num_neighbors);
neighbor_y = j - radius * sin(2*pi*k/num_neighbors);
neighbor_pixel = interp2(image, neighbor_y, neighbor_x);
if neighbor_pixel >= center_pixel
binary_code = strcat(binary_code, '1');
else
binary_code = strcat(binary_code, '0');
end
end
decimal_code = bin2dec(binary_code);
lbp_map(i, j) = decimal_code;
end
end
end
```
请注意,代码中的`image.jpg`应该替换为相应的图片文件路径。此外,代码使用MATLAB内置的`extractLBPFeatures`函数来计算LBP特征,并使用自定义函数`CircularRotationInvariantLBP`将LBP特征重排为旋转不变均匀LBP特征。最后,使用`LocalBinaryPattern`函数实现对灰度图像的LBP图谱计算。
希望这对你有所帮助!
阅读全文