T(n)={1,n=1 8T(n/2+O(nlogn)),n=1},求T(n)的时间复杂度并附带过程

时间: 2023-09-25 09:10:58 浏览: 137
根据递推式,可以写出T(n)的递归式: T(n) = 8T(n/2) + O(nlogn) 利用递归树法,可以得到: T(n) = O(nlogn) + 8O(n/2log(n/2)) + 64O(n/4log(n/4)) + ... + O(1) 因为log(x/y) = log(x) - log(y),我们可以将上式简化为: T(n) = O(nlogn) + 8O(n/2logn) + 64O(n/4logn) + ... + O(1) T(n) = O(nlogn) + 4nlogn + 16nlogn + ... + nlogn T(n) = O(nlogn) + nlogn(4 + 16 + ... + 2^k) 其中k为满足2^k <= n的最大整数。因为一个长度为n的链表,最多有n个结点,所以k = logn。 将等比数列求和得: 4 + 16 + ... + 2^k = 2^(k+1) - 4 代入原式得: T(n) = O(nlogn) + nlogn(2logn - 4) T(n) = O(nlogn) + nlog^2(n) - 4nlogn 因此,T(n)的时间复杂度为O(nlog^2(n))。
相关问题

利用主定理说明以下时间函数的复杂度: T(n) = 9T(n/3) + n ;T(n) = T(2n/3) + 1 ;T(n) = 3T(n/4) + nlogn;T(n)=2T(n/2)+2

对于第一个时间函数,根据主定理,其中的a=9,b=3,d=0,因为logb(a) = log3(9) = 2 > d,所以时间复杂度为 O(n^(log3(9))),即 O(n^2.08)。 对于第二个时间函数,根据主定理,其中的a=1,b=3/2,d=0,因为logb(a) = log3/2(1) = 0 < d,所以时间复杂度为 O(1)。 对于第三个时间函数,根据主定理,其中的a=3,b=4,d=1,因为logb(a) = log4(3) < d,所以时间复杂度为 O(nlogn)。 对于第四个时间函数,根据主定理,其中的a=2,b=2,d=1,因为logb(a) = log2(2) = 1 = d,所以时间复杂度为 O(nlogn)。

利用主定理说明以下时间函数的复杂度: T(n) = 9T(n/3) + n ;T(n) = T(2n/3) + 1 ;T(n) = 3T(n/4) + nlogn;T(n) = 2T(n/2) + 2

### 回答1: 回答: 1. 利用主定理,可以发现 T(n) = 9T(n/3) 的复杂度为 O(n^2),因为 a = 9,b = 3,d = 2。 2. 利用主定理,可以发现 T(n) = T(2n/3) 的复杂度为 O(log n),因为 a = 1,b = 3/2,d = 0。 3. 利用主定理,可以发现 T(n) = 3T(n/4) 的复杂度为 O(n log n),因为 a = 3,b = 4/3,d = 1。 4. 利用主定理,可以发现 T(n) = 2T(n/2) 的复杂度为 O(n),因为 a = 2,b = 2,d = 1。 ### 回答2: 根据主定理,对于递归函数 T(n) = aT(n/b) + f(n),其中 a >= 1, b > 1,f(n) 是一个非负函数。假设 T(n) 的求解时间复杂度为 O(n^d)。 对于第一个函数 T(n) = 9T(n/3) + n,根据主定理可知,a = 9,b = 3,f(n) = n。计算 log_b(a) = log_3(9) = 2,由于 f(n) = n = O(n^d),其中 d = 1,因此根据主定理的情况2,T(n) 的时间复杂度为 O(n^d*log n) = O(nlog n)。 对于第二个函数 T(n) = T(2n/3) + 1,根据主定理可知,a = 1,b = 3/2,f(n) = 1。计算 log_b(a) = log_(3/2)(1) = 0,由于 f(n) = 1 = O(n^d),其中 d = 0,因此根据主定理的情况1,T(n) 的时间复杂度为 O(n^d*log n) = O(log n)。 对于第三个函数 T(n) = 3T(n/4) + nlogn,根据主定理可知,a = 3,b = 4,f(n) = nlogn。计算 log_b(a) = log_4(3) ≈ 1.26,由于 f(n) = nlogn = O(n^d),其中 d ≈ 1.26,因此根据主定理的情况3,T(n) 的时间复杂度为 O(n^d) ≈ O(n^1.26)。 对于第四个函数 T(n) = 2T(n/2) + 2,根据主定理可知,a = 2,b = 2,f(n) = 2。计算 log_b(a) = log_2(2) = 1,由于 f(n) = 2 = O(n^d),其中 d = 0,因此根据主定理的情况1,T(n) 的时间复杂度为 O(n^d*log n) = O(log n)。 综上所述,第一个函数的时间复杂度为 O(nlog n),第二个函数的时间复杂度为 O(log n),第三个函数的时间复杂度为 O(n^1.26),第四个函数的时间复杂度为 O(log n)。 ### 回答3: 利用主定理是一种用来估算递归算法时间复杂度的方法。主定理适用于一类具有递归形式的问题,形如 T(n) = aT(n/b) + f(n) 的递归方程式。 对于第一个函数 T(n) = 9T(n/3),其中 a = 9,b = 3,f(n) = n。根据主定理,若 f(n) = O(n^c)(其中 c >= 0),且 a/b^c < 1,则 T(n) = Θ(n^c)。在这个情况下,a/b^c = 9/(3^1) = 3 > 1。因此,主定理不适用于这个函数,我们无法利用主定理得出时间复杂度。 对于第二个函数 T(n) = T(2n/3),其中 a = 1,b = 2/3,f(n) = 1。根据主定理,若 f(n) = Θ(n^c * log^k(n))(其中 c >= 0,k >= 0),则 T(n) = Θ(n^c * log^(k+1)(n))。在这个情况下,f(n) = Θ(1) = Θ(n^0 * log^0(n))。我们可以看出 a/b^c = (2/3)^0 = 1 < 1,且 k+1 = 1+1 = 2。因此,根据主定理可知 T(n) = Θ(n^0 * log^2(n)) = Θ(log^2(n))。 对于第三个函数 T(n) = 3T(n/4),其中 a = 3,b = 4,f(n) = nlogn。根据主定理,若 f(n) = Θ(n^c * log^k(n))(其中 c > 0,k >= 0),则 T(n) = Θ(n^c * log^(k+1)(n))。在这个情况下,f(n) = Θ(nlogn) = Θ(n^1 * log^1(n))。我们可以看到 a/b^c = 3/(4^1) = 3/4 < 1,且 k+1 = 1+1 = 2。因此,根据主定理可知 T(n) = Θ(n^1 * log^2(n)) = Θ(nlog^2(n))。 对于第四个函数 T(n) = 2T(n/2),其中 a = 2,b = 2,f(n) = 2。根据主定理,若 f(n) = Θ(n^c)(其中 c >= 0),则 T(n) = Θ(n^c * log(n))。在这个情况下,f(n) = Θ(2) = Θ(n^0)。我们可以看到 a/b^c = 2/(2^0) = 2 > 1。因此,主定理不适用于这个函数,我们无法利用主定理得出时间复杂度。
阅读全文

相关推荐

zip

最新推荐

recommend-type

交互修改.rp

交互修改
recommend-type

14230-2.pdf

ISO14230-2标准文档,定义了K线通讯方式和数据格式,对于汽车诊断非常有用
recommend-type

基于python的求职招聘网站 python+django+vue搭建的求职招聘管理系统 - 毕业设计 - 课程设计.zip

学习作者过程中,遇到问题可以咨询解决方案前台地址http://job.gitapp.cn后台地址http://job.gitapp.cn/admin后台管理帐号用户名admin123 密码admin123功能介绍平台采用B/S结构,前端采用主流的Python语言进行开发,前端采用主流的V​​ue.js进行开发。整个平台包括前台和后台两个部分。前台功能包括首页、岗位详情页、简历中心、用户设置模块。后台功能包括总览、岗位管理、公司管理、分类管理、标签管理、评论管理、用户管理、运营管理、日志管理、系统信息模块。代码结构服务器目录编号web目录是前端代码部署运行执行步骤(1)安装python 3.8(2) 安装依赖。进入server目录下,执行 pip install -r requests.txt(3)安装mysql 5.7数据库,并创建数据库,创建SQL如下CREATE DATABASE IF NOT EXISTS xxx DEFAULT CHARSET utf8 COLLATE utf8_general_ci(4)恢复
recommend-type

4602-职业规划设计书PPT护理.pptx

4602-职业规划设计书PPT护理
recommend-type

非常好的SqlServer查询性能优化教程资料100%好用.zip

非常好的SqlServer查询性能优化教程资料100%好用.zip
recommend-type

R语言中workflows包的建模工作流程解析

资源摘要信息:"工作流程建模是将预处理、建模和后处理请求结合在一起的过程,从而优化数据科学的工作流程。工作流程可以将多个步骤整合为一个单一的对象,简化数据处理流程,提高工作效率和可维护性。在本资源中,我们将深入探讨工作流程的概念、优点、安装方法以及如何在R语言环境中使用工作流程进行数据分析和模型建立的例子。 首先,工作流程是数据处理的一个高级抽象,它将数据预处理(例如标准化、转换等),模型建立(例如使用特定的算法拟合数据),以及后处理(如调整预测概率)等多个步骤整合起来。使用工作流程,用户可以避免对每个步骤单独跟踪和管理,而是将这些步骤封装在一个工作流程对象中,从而简化了代码的复杂性,增强了代码的可读性和可重用性。 工作流程的优势主要体现在以下几个方面: 1. 管理简化:用户不需要单独跟踪和管理每个步骤的对象,只需要关注工作流程对象。 2. 效率提升:通过单次fit()调用,可以执行预处理、建模和模型拟合等多个步骤,提高了操作的效率。 3. 界面简化:对于具有自定义调整参数设置的复杂模型,工作流程提供了更简单的界面进行参数定义和调整。 4. 扩展性:未来的工作流程将支持添加后处理操作,如修改分类模型的概率阈值,提供更全面的数据处理能力。 为了在R语言中使用工作流程,可以通过CRAN安装工作流包,使用以下命令: ```R install.packages("workflows") ``` 如果需要安装开发版本,可以使用以下命令: ```R # install.packages("devtools") devtools::install_github("tidymodels/workflows") ``` 通过这些命令,用户可以将工作流程包引入到R的开发环境中,利用工作流程包提供的功能进行数据分析和建模。 在数据建模的例子中,假设我们正在分析汽车数据。我们可以创建一个工作流程,将数据预处理的步骤(如变量选择、标准化等)、模型拟合的步骤(如使用特定的机器学习算法)和后处理的步骤(如调整预测阈值)整合到一起。通过工作流程,我们可以轻松地进行整个建模过程,而不需要编写繁琐的代码来处理每个单独的步骤。 在R语言的tidymodels生态系统中,工作流程是构建高效、可维护和可重复的数据建模工作流程的重要工具。通过集成工作流程,R语言用户可以在一个统一的框架内完成复杂的建模任务,充分利用R语言在统计分析和机器学习领域的强大功能。 总结来说,工作流程的概念和实践可以大幅提高数据科学家的工作效率,使他们能够更加专注于模型的设计和结果的解释,而不是繁琐的代码管理。随着数据科学领域的发展,工作流程的工具和方法将会变得越来越重要,为数据处理和模型建立提供更加高效和规范的解决方案。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【工程技术中的数值分析秘籍】:数学问题的终极解决方案

![【工程技术中的数值分析秘籍】:数学问题的终极解决方案](https://media.geeksforgeeks.org/wp-content/uploads/20240429163511/Applications-of-Numerical-Analysis.webp) 参考资源链接:[东南大学_孙志忠_《数值分析》全部答案](https://wenku.csdn.net/doc/64853187619bb054bf3c6ce6?spm=1055.2635.3001.10343) # 1. 数值分析的数学基础 在探索科学和工程问题的计算机解决方案时,数值分析为理解和实施这些解决方案提供了
recommend-type

如何在数控车床仿真系统中正确进行机床回零操作?请结合手工编程和仿真软件操作进行详细说明。

机床回零是数控车床操作中的基础环节,特别是在仿真系统中,它确保了机床坐标系的正确设置,为后续的加工工序打下基础。在《数控车床仿真实验:操作与编程指南》中,你可以找到关于如何在仿真环境中进行机床回零操作的详尽指导。具体操作步骤如下: 参考资源链接:[数控车床仿真实验:操作与编程指南](https://wenku.csdn.net/doc/3f4vsqi6eq?spm=1055.2569.3001.10343) 首先,确保数控系统已经启动,并处于可以进行操作的状态。然后,打开机床初始化界面,解除机床锁定。在机床控制面板上选择回零操作,这通常涉及选择相应的操作模式或输入特定的G代码,例如G28或
recommend-type

Vue统计工具项目配置与开发指南

资源摘要信息:"该项目标题为'bachelor-thesis-stat-tool',是一个涉及统计工具开发的项目,使用Vue框架进行开发。从描述中我们可以得知,该项目具备完整的前端开发工作流程,包括项目设置、编译热重装、生产编译最小化以及代码质量检查等环节。具体的知识点包括: 1. Vue框架:Vue是一个流行的JavaScript框架,用于构建用户界面和单页应用程序。它采用数据驱动的视图层,并能够以组件的形式构建复杂界面。Vue的核心库只关注视图层,易于上手,并且可以通过Vue生态系统中的其他库和工具来扩展应用。 2. yarn包管理器:yarn是一个JavaScript包管理工具,类似于npm。它能够下载并安装项目依赖,运行项目的脚本命令。yarn的特色在于它通过一个锁文件(yarn.lock)来管理依赖版本,确保项目中所有人的依赖版本一致,提高项目的可预测性和稳定性。 3. 项目设置与开发流程: - yarn install:这是一个yarn命令,用于安装项目的所有依赖,这些依赖定义在package.json文件中。执行这个命令后,yarn会自动下载并安装项目所需的所有包,以确保项目环境配置正确。 - yarn serve:这个命令用于启动一个开发服务器,使得开发者可以在本地环境中编译并实时重载应用程序。在开发模式下,这个命令通常包括热重载(hot-reload)功能,意味着当源代码发生变化时,页面会自动刷新以反映最新的改动,这极大地提高了开发效率。 4. 生产编译与代码最小化: - yarn build:这个命令用于构建生产环境所需的代码。它通常包括一系列的优化措施,比如代码分割、压缩和打包,目的是减少应用程序的体积和加载时间,提高应用的运行效率。 5. 代码质量检查与格式化: - yarn lint:这个命令用于运行项目中的lint工具,它是用来检查源代码中可能存在的语法错误、编码风格问题、代码重复以及代码复杂度等问题。通过配置适当的lint规则,可以统一项目中的代码风格,提高代码的可读性和可维护性。 6. 自定义配置: - 描述中提到'请参阅',虽然没有具体信息,但通常意味着项目中会有自定义的配置文件或文档,供开发者参考,如ESLint配置文件(.eslintrc.json)、webpack配置文件等。这些文件中定义了项目的个性化设置,包括开发服务器设置、代码转译规则、插件配置等。 综上所述,这个项目集成了前端开发的常用工具和流程,展示了如何使用Vue框架结合yarn包管理器和多种开发工具来构建一个高效的项目。开发者需要熟悉这些工具和流程,才能有效地开发和维护项目。"