def forward(self, x): # b, n, c x_q = self.q_conv(x).permute(0, 2, 1) # b, c, n x_k = self.k_conv(x) x_v = self.v_conv(x) # b, n, n energy = torch.bmm(x_q, x_k) attention = self.softmax(energy) attention = attention / (1e-9 + attention.sum(dim=1, keepdim=True)) # b, c, n x_r = torch.bmm(x_v, attention) x_r = self.act(self.after_norm(self.trans_conv(x - x_r))) x = x + x_r return x

时间: 2024-02-06 21:03:02 浏览: 28
这段代码实现了Transformer中的多头自注意力机制(self-attention)。具体步骤如下: 1. 将输入x经过三个卷积层,分别得到query(x_q),key(x_k)和value(x_v)向量,这里的x_q的维度为(b, c, n),x_k和x_v的维度为(b, n, c)。 2. 将x_q和x_k进行矩阵乘法得到能量矩阵(energy),维度为(b, c, c)。 3. 对能量矩阵进行softmax计算得到注意力矩阵(attention),维度为(b, c, c)。 4. 对注意力矩阵进行归一化处理,保证其所有元素的和为1。 5. 将注意力矩阵和x_v进行矩阵乘法,得到加权后的value矩阵(x_r),维度为(b, c, n)。 6. 将x和x_r相减,并通过残差连接和LayerNorm进行处理,最终得到输出x(维度为(b, n, c))。 其中,softmax函数用于将能量矩阵进行归一化处理,保证注意力矩阵的所有元素都在0到1之间;归一化函数用于保证注意力矩阵的所有元素相加之和为1,这样才能达到加权的效果。残差连接和LayerNorm用于加速模型的训练和提高模型的精度。
相关问题

class ShiftModule(nn.Module): def __init__(self, input_channels, n_segment=8,n_div=8, mode='shift'): super(ShiftModule, self).__init__() self.input_channels = input_channels self.n_segment = n_segment self.fold_div = n_div self.fold = self.input_channels // self.fold_div self.conv = nn.Conv1d(self.fold_div*self.fold, self.fold_div*self.fold, kernel_size=3, padding=1, groups=self.fold_div*self.fold, bias=False) if mode == 'shift': self.conv.weight.requires_grad = True self.conv.weight.data.zero_() self.conv.weight.data[:self.fold, 0, 2] = 1 # shift left self.conv.weight.data[self.fold: 2 * self.fold, 0, 0] = 1 # shift right if 2*self.fold < self.input_channels: self.conv.weight.data[2 * self.fold:, 0, 1] = 1 # fixed elif mode == 'fixed': self.conv.weight.requires_grad = True self.conv.weight.data.zero_() self.conv.weight.data[:, 0, 1] = 1 # fixed elif mode == 'norm': self.conv.weight.requires_grad = True def forward(self, x): nt, c, h, w = x.size() n_batch = nt // self.n_segment x = x.view(n_batch, self.n_segment, c, h, w) x = x.permute(0, 3, 4, 2, 1) # (n_batch, h, w, c, n_segment) x = x.contiguous().view(n_batch*h*w, c, self.n_segment) x = self.conv(x) # (n_batch*h*w, c, n_segment) x = x.view(n_batch, h, w, c, self.n_segment) x = x.permute(0, 4, 3, 1, 2) # (n_batch, n_segment, c, h, w) x = x.contiguous().view(nt, c, h, w) return x

这是一个名为ShiftModule的类,继承自nn.Module。它有四个参数:input_channels表示输入的通道数,n_segment表示分段数,n_div表示每个分段的通道数,mode表示模式,可以是'shift'或者其他。 在初始化函数__init__中,首先调用父类的构造函数,然后将参数赋值给类的属性。其中,fold表示每个分段的折叠数,即fold_div的商;conv是一个1D卷积层,输入通道数为fold_div*fold,输出通道数为fold_div*fold,卷积核大小为3,padding为1,groups为fold_div*fold,表示按照fold_div*fold个通道进行分组卷积,bias为False,表示不使用偏置。 如果mode为'shift',则将卷积层的权重设置为可训练,初始化为0,并将第一折叠的第0个通道的第2个位置的权重设置为1。

class CNN(nn.Module): def __init__(self,input_size,output_size): super(CNN, self).__init__() self.B = B self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Sequential( nn.Conv1d(in_channels=input_size, out_channels=64, kernel_size=2), # 24 - 2 + 1 = 23 nn.ReLU(), nn.MaxPool1d(kernel_size=2, stride=1), # 23 - 2 + 1 = 22 ) self.conv2 = nn.Sequential( nn.Conv1d(in_channels=64, out_channels=128, kernel_size=2), # 22 - 2 + 1 = 21 nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=1), # 21 - 2 + 1 = 20 ) self.Linear1 = nn.Linear(self.B * 127 * 20, self.B * 50) self.Linear2 = nn.Linear(self.B * 50 , output_size) def forward(self, x): # [batch_size, n_features, data_len] x = x.permute(0, 2, 1) x = self.conv1(x) x = self.conv2(x) x = x.view(-1) x = self.Linear1(x) x = self.relu(x) x = self.Linear2(x) x = x.view(x.shape[0], -1) return x

这段代码定义了一个CNN模型,它包含了两个卷积层和两个全连接层。下面是对代码的解释: ```python class CNN(nn.Module): def __init__(self, input_size, output_size): super(CNN, self).__init__() self.B = B self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Sequential( nn.Conv1d(in_channels=input_size, out_channels=64, kernel_size=2), # 24 - 2 + 1 = 23 nn.ReLU(), nn.MaxPool1d(kernel_size=2, stride=1), # 23 - 2 + 1 = 22 ) self.conv2 = nn.Sequential( nn.Conv1d(in_channels=64, out_channels=128, kernel_size=2), # 22 - 2 + 1 = 21 nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=1), # 21 - 2 + 1 = 20 ) self.Linear1 = nn.Linear(self.B * 127 * 20, self.B * 50) self.Linear2 = nn.Linear(self.B * 50 , output_size) def forward(self, x): # [batch_size, n_features, data_len] x = x.permute(0, 2, 1) x = self.conv1(x) x = self.conv2(x) x = x.view(-1) x = self.Linear1(x) x = self.relu(x) x = self.Linear2(x) x = x.view(x.shape[0], -1) return x ``` 在构造函数`__init__`中,模型初始化了一些参数并定义了网络的各个层。其中,`self.conv1`是一个包含了一个卷积层、ReLU激活函数和最大池化层的序列。`self.conv2`也是一个类似的序列。`self.Linear1`和`self.Linear2`分别是两个全连接层。 在前向传播函数`forward`中,输入数据首先进行形状变换,然后通过卷积层和激活函数进行特征提取和降维。之后,将特征展平并通过全连接层进行预测。最后,输出结果进行形状变换以匹配预期的输出形状。 需要注意的是,代码中的一些变量(如`B`)没有给出具体的定义,你可能需要根据自己的需求进行修改。 希望这个解释对你有所帮助!如果还有其他问题,请随时提问。

相关推荐

class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1)) self.pool_w1 = nn.MaxPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) x_h1 = self.pool_h1(x) x_w1 = self.pool_w1(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w, x_h1, x_w1], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w, _, _ = torch.split(y, [h, w, h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) x_w1 = x_w1.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() a_w1 = self.conv_w(x_w1).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_w1) return self.conv(out)在里面修改一下,换成这个y = torch.cat([x_h+x_h1, x_w+x_w1], dim=2)

最新推荐

recommend-type

vb仓库管理系统(可执行程序+源码+ 开题报告+ 答辩稿)【VB】.zip

vb仓库管理系统(可执行程序+源码+ 开题报告+ 答辩稿)【VB】
recommend-type

甘胺酸市场 - 全球产业规模、份额、趋势、机会和预测,按类型、应用、地区和竞争细分,2019-2029F.docx

甘胺酸市场 - 全球产业规模、份额、趋势、机会和预测,按类型、应用、地区和竞争细分,2019-2029F
recommend-type

cryptography-37.0.1-cp36-abi3-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

SMG2336N-VB一款N-Channel沟道SOT23的MOSFET晶体管参数介绍与应用说明

SOT23;N—Channel沟道,30V;6.5A;RDS(ON)=30mΩ@VGS=10V,VGS=20V;Vth=1.2~2.2V;
recommend-type

2021年数学建模国赛C题第一问- Python代码-word完整版-基于熵权法-TOPSIS法

2021年数学建模国赛C题第一问 免费的,有需要自取哦 如果能关注我一下,那是最好的了 实在不行就在我的任意一篇博客中 留个免费的赞吧,感谢大佬 如果有错误的哈 欢迎指正哦 祝您变得更强 ------------------------------------------- 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度 蹭曝光度,蹭曝光度
recommend-type

STC89C51 简单时钟

STC89C51 简单时钟,叫你从基础开始学习单片机,
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?

![MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?](https://www.finebi.com/wp-content/uploads/2019/11/FineBI%E8%A1%8C%E4%B8%9A%E9%A9%BE%E9%A9%B6%E8%88%B1-1024x510.png) # 1. MATLAB归一化概述 归一化是一种数据预处理技术,用于将数据缩放到特定范围内,从而消除不同特征之间的尺度差异。在MATLAB中,有各种归一化方法可用于不同类型的数据和应用程序。 归一化的主要目的是: - 提高模型的训练效率和准确性,通过消除特征之间的尺度差异,使模型能够更有效地学习
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

Linux系统常用操作命令大全手册

附件是Linux系统常用操作命令大全手册,是 markdown格式,其中覆盖了Linux系统管理、文件操作、网络配置等多个方面,都是日常工作中非常常用的命令,欢迎大家下载学习使用!