module aa(clk,sel,rst_n,seg,Q); input clk,rst_n,Q; output reg [2:0]sel; output reg [6:0]seg; reg [25:0]cnt; reg clk_n; always @(posedge clk_n) begin if(rst_n==0) sel <= 3'd0; else begin if(sel < 3'd6) sel <= sel+1'b1; else sel <= 3'd0; end end always @(posedge clk) begin if(cnt==26'd99_999) begin cnt <= 0; clk_n <= ~clk_n; end else cnt <= cnt+1'b1; end always @(Q or sel) begin if(Q==0) seg <= 7'b1000000; else case(sel) 3'b000 : seg <= 7'b1111001; 3'b001 : seg <= 7'b0100100; 3'b010 : seg <= 7'b0110000; 3'b011 : seg <= 7'b0011001; 3'b100 : seg <= 7'b0010010; 3'b101 : seg <= 7'b0000010; default seg <=7'b1111111; endcase end endmodule
时间: 2024-04-04 09:31:07 浏览: 58
这是一个 Verilog HDL 代码的模块,包含了一个数字显示器的驱动逻辑。模块名为 "aa",包含了 5 个输入输出端口,分别是时钟 clk、选择信号 sel、复位信号 rst_n、数码管显示端口 seg 和输入端口 Q。其中,sel 和 seg 用于控制数码管的显示,clk 为时钟输入,rst_n 为复位信号输入,Q 为输入信号输入。整个模块包含三个 always 块,分别对应时钟、选择信号和输入信号的控制逻辑。其中,时钟块用于计时,选择信号块用于控制数码管的选择,输入信号块用于控制数码管的显示。
相关问题
程序源代码】(加注释)module top(clk,rst_n,seg,sel); input clk,rst_n;//50MHZ系统时钟 output [7:0] seg; output [2:0] sel; wire clk_r; wire [3:0] num; //例化模块 speed speed( .clk(clk),.rst_n(rst_n),.clk_r(clk_r) ); sel_det sel_det( .clk_r(clk_r),.rst_n(rst_n),.sel(sel)); num_det num_det(.clk_r(clk_r),.rst_n(rst_n),.num(num) ); seg_num seg_num( .num(num),.seg(seg) ); endmodule // module speed(clk,rst_n,clk_r); input clk,rst_n; output clk_r;//50MHZ系统时钟 reg [23:0] cnt; reg clk_r; always @(posedge clk or negedge rst_n) begin if (!rst_n) begin cnt=0; clk_r=0; end else if (cnt==5) begin cnt=0; clk_r=~clk_r; end else cnt=cnt+1; end endmodule
这是一个 Verilog 代码示例,包含了三个模块,下面是代码的详细解释和注释:
```
module top(clk, rst_n, seg, sel);
input clk, rst_n; // 输入信号 clk 和 rst_n
output [7:0] seg; // 输出信号 seg,7 个七段数码管的显示
output [2:0] sel; // 输出信号 sel,3 个数码管的选择信号
wire clk_r; // 时钟信号 clk_r,用于控制显示的速度
// 实例化三个模块
speed speed(.clk(clk), .rst_n(rst_n), .clk_r(clk_r));
sel_det sel_det(.clk_r(clk_r), .rst_n(rst_n), .sel(sel));
num_det num_det(.clk_r(clk_r), .rst_n(rst_n), .num(num));
seg_num seg_num(.num(num), .seg(seg));
endmodule
// 模块 speed,用于控制时钟的频率
module speed(clk, rst_n, clk_r);
input clk, rst_n; // 输入信号 clk 和 rst_n
output clk_r; // 输出时钟信号 clk_r
reg [23:0] cnt; // 计数器 cnt,用于计算时钟周期数
reg clk_r; // 时钟信号 clk_r
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin // 如果复位信号为低电平,计数器和时钟信号都清零
cnt <= 0;
clk_r <= 0;
end else if (cnt == 5) begin // 如果计数器达到 5,时钟信号取反,计数器清零
cnt <= 0;
clk_r <= ~clk_r;
end else begin // 否则计数器加 1
cnt <= cnt + 1;
end
end
endmodule
// 模块 sel_det,用于生成数码管选择信号
module sel_det(clk_r, rst_n, sel);
input clk_r, rst_n; // 输入时钟信号 clk_r 和复位信号 rst_n
output [2:0] sel; // 输出选择信号 sel
reg [1:0] cnt; // 计数器 cnt,用于计算选择信号
always @(posedge clk_r or negedge rst_n) begin
if (!rst_n) begin // 如果复位信号为低电平,计数器和选择信号都清零
cnt <= 0;
sel <= 3'b000;
end else if (cnt == 2) begin // 如果计数器达到 2,选择信号加 1,计数器清零
cnt <= 0;
sel <= sel + 1;
end else begin // 否则计数器加 1
cnt <= cnt + 1;
end
end
endmodule
// 模块 num_det,用于生成数码管显示的数字
module num_det(clk_r, rst_n, num);
input clk_r, rst_n; // 输入时钟信号 clk_r 和复位信号 rst_n
output [3:0] num; // 输出数字 num,4 个二进制位
reg [3:0] cnt; // 计数器 cnt,用于计算数字
always @(posedge clk_r or negedge rst_n) begin
if (!rst_n) begin // 如果复位信号为低电平,计数器和数字都清零
cnt <= 0;
num <= 4'b0000;
end else if (cnt == 3) begin // 如果计数器达到 3,数字加 1,计数器清零
cnt <= 0;
num <= num + 1;
end else begin // 否则计数器加 1
cnt <= cnt + 1;
end
end
endmodule
// 模块 seg_num,用于将数字转换为七段数码管的显示信号
module seg_num(num, seg);
input [3:0] num; // 输入数字 num,4 个二进制位
output [7:0] seg; // 输出七段数码管的显示信号 seg,8 个二进制位
always @(num) begin
case(num) // 根据输入数字的不同情况,生成不同的七段数码管显示信号
4'b0000: seg <= 8'b11000000;
4'b0001: seg <= 8'b11111001;
4'b0010: seg <= 8'b10100100;
4'b0011: seg <= 8'b10110000;
4'b0100: seg <= 8'b10011001;
4'b0101: seg <= 8'b10010010;
4'b0110: seg <= 8'b10000010;
4'b0111: seg <= 8'b11111000;
4'b1000: seg <= 8'b10000000;
4'b1001: seg <= 8'b10010000;
4'b1010: seg <= 8'b10001000;
4'b1011: seg <= 8'b10000011;
4'b1100: seg <= 8'b11000110;
4'b1101: seg <= 8'b10100001;
4'b1110: seg <= 8'b10000110;
4'b1111: seg <= 8'b10001110;
default: seg <= 8'b11111111; // 如果不是有效数字,显示全灭
endcase
end
endmodule
```
这个代码实现了一个简单的数字计数器,使用一个 4 位计数器控制数码管显示的数字,一个 2 位计数器控制数码管的选择,一个 24 位计数器控制时钟的频率,实现了一个简单的流水灯效果。其中,每个模块都有自己的功能,通过不同的输入和输出信号连接在一起,实现了一个完整的数字计数器。
module seven_tube(clk, rst_n, data_in, sel, seg); input clk; input rst_n; input [23:0] data_in; //6个数码管显示:24位数据 output [2:0] sel; //数码管位选信号 output [7:0] seg; //数码管段选信号 wire clk_1khz; freq freq_dut( .clk(clk), .rst_n(rst_n), .clk_out(clk_1khz) ); seg_ctrl_v2 seg_ctrl_v2_dut( .clk_1khz(clk_1khz), .rst_n(rst_n), .data_in(data_in), .sel(sel), .seg(seg) ); endmodule
这段Verilog代码实现了一个七段数码管模块,用于显示数字。模块接收时钟信号`clk`、复位信号`rst_n`、24位的数据信号`data_in`,以及输出位选信号`sel`和段选信号`seg`。
首先,代码中实例化了一个频率分频模块`freq_dut`,将输入时钟信号`clk`和复位信号`rst_n`连接到该模块,并通过输出信号`clk_out`获得1kHz的时钟信号`clk_1khz`。这个1kHz的时钟信号用于驱动七段数码管的刷新。
接下来,代码实例化了一个`seg_ctrl_v2`模块,将1kHz的时钟信号`clk_1khz`、复位信号`rst_n`、24位的数据信号`data_in`以及输出的位选信号`sel`和段选信号`seg`连接到该模块。这个模块将根据输入的数据信号控制七段数码管的显示。
这段代码是一个简单的七段数码管模块的实现,你可以根据具体的需求进行修改和扩展。
阅读全文