国内公司有名的大语言模型有哪些

时间: 2023-10-08 20:14:39 浏览: 80
国内公司目前有几个知名的大语言模型,其中包括: 1. 百度的ERNIE(Enhanced Representation through kNowledge IntEgration)系列:ERNIE是百度推出的基于预训练的中文语言理解模型,包括ERNIE、ERNIE 2.0和ERNIE Tiny等不同规模的模型。它们在多项中文自然语言处理任务上取得了很好的效果。 2. 阿里巴巴的ALBERT(A Lite BERT):ALBERT是阿里巴巴提出的轻量级版本BERT(Bidirectional Encoder Representations from Transformers),它在减少参数量的同时保持了与BERT相近的性能,在多项任务上得到了验证。 3. 腾讯的BERT-wwm(BERT Whole Word Masking):BERT-wwm是腾讯推出的一种中文预训练语言模型,相比于原始的BERT,它在中文文本处理中引入了全词掩盖策略,能够更好地处理中文分词问题。 4. 华为的NEZHA(NEural laNGuage understAnding):NEZHA是华为提出的基于Transformer结构的中文预训练语言模型。它在中文自然语言处理任务上取得了较好的效果,并且具备较高的推理效率。 这些大语言模型在自然语言处理领域具有较高的影响力,它们在机器翻译、文本分类、命名实体识别、情感分析等任务上都有广泛的应用和研究。同时,国内的一些互联网巨头和研究机构也在不断探索和推出新的语言模型,以提升中文自然语言处理的能力。
相关问题

深度学习有那些比较有名的网络模型

深度学习中有许多著名的网络模型,以下是其中一些: 1. 卷积神经网络(Convolutional Neural Networks,CNN):主要用于图像识别和计算机视觉任务,通过卷积层、池化层和全连接层来提取图像特征。 2. 递归神经网络(Recurrent Neural Networks,RNN):适用于序列数据的处理,如自然语言处理和语音识别。RNN具有循环连接,可以捕捉序列中的时序信息。 3. 长短期记忆网络(Long Short-Term Memory,LSTM):一种RNN的变体,通过引入门控机制来解决传统RNN中的长期依赖问题,更适合处理长序列。 4. 生成对抗网络(Generative Adversarial Networks,GAN):由生成器和判别器组成的两个网络,通过对抗训练的方式生成逼真的样本。 5. 注意力机制(Attention Mechanism):广泛应用于自然语言处理任务中,通过学习对输入的不同部分进行加权,以便更好地处理输入序列中的重要信息。 这只是深度学习中一小部分著名的网络模型,实际上还有很多其他模型,如Transformer、ResNet、GPT等。每个模型都有其特定的应用领域和优势。

国内的网络工程师大佬有那些有名的

网络工程师大佬?一些国内比较有名的网络工程师大佬包括:郭斌(华为公司首席网络架构师)、林建星(清华大学教授)、王志勇(北京邮电大学教授)、梁淳风(阿里云首席网络工程师)、李侃(华为公司首席技术架构师)、罗伟(华为公司无线网架构师)等等。

相关推荐

目前在目标检测领域,有不少好用的模型,以下是其中几个比较有名且效果比较好的模型,以及用Python实现的代码举例: 1. Faster R-CNN:Faster R-CNN是一种基于Region Proposal Network(RPN)的目标检测算法,它比较适合用于对小物体的检测。Python实现代码如下: python import torch import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor # 加载预训练的 Faster R-CNN 模型 model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) # 用 Faster R-CNN 模型中的分类器替换掉预训练模型中的分类器 num_classes = 2 # 假设我们只有两种物体需要检测 in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) # 定义数据加载器、优化器等,开始训练模型 2. YOLOv3:YOLOv3是一种基于卷积神经网络的目标检测算法,它比较适合用于对大物体的检测。Python实现代码如下: python import cv2 import numpy as np import urllib.request # 加载 YOLOv3 模型 net = cv2.dnn.readNetFromDarknet("yolov3.cfg", "yolov3.weights") # 定义需要检测的物体类别和阈值等参数 classes = ["person", "car", "truck", ...] conf_threshold = 0.5 nms_threshold = 0.4 colors = np.random.uniform(0, 255, size=(len(classes), 3)) # 加载测试图片,执行目标检测 img_url = "https://example.com/test.jpg" urllib.request.urlretrieve(img_url, "test.jpg") img = cv2.imread("test.jpg") blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), swapRB=True, crop=False) net.setInput(blob) outs = net.forward(net.getUnconnectedOutLayersNames()) # 预测并绘制边界框 boxes = [] confidences = [] class_ids = [] HT, WT, _ = img.shape for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > conf_threshold: x, y, w, h = detection[:4] * np.array([WT, HT, WT, HT]) left = int(x - w/2) top = int(y - h/2) right = int(x + w/2) bottom = int(y + h/2) boxes.append([left, top, right, bottom]) confidences.append(float(confidence)) class_ids.append(int(class_id)) indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) for i in indices: i = i[0] box = boxes[i] left, top, right, bottom = box label = f"{classes[class_ids[i]]}: {confidences[i]:.2f}" color = colors[class_ids[i]] cv2.rectangle(img, (left, top), (right, bottom), color, 2) cv2.putText(img, label, (left, top-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # 显示结果图像 cv2.imshow("result", img) cv2.waitkey(0) cv2.destroyAllWindows() 以上代码仅仅是快速示例,如果想要更深入地了解这些模型的使用和原理,需要查阅更多资料、学习更多知识。

最新推荐

网络技术-综合布线-河南农村宽带客户细分的研究.pdf

网络技术-综合布线-河南农村宽带客户细分的研究.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

理解Socket编程的基础概念

# 1. 介绍Socket编程的基本概念 ## 1.1 什么是Socket编程 Socket编程是一种在网络编程中使用的抽象概念,它允许应用程序通过网络进行通信。通过Socket编程,可以实现客户端与服务器端之间的数据交换和通信。 ## 1.2 Socket编程的应用范围 Socket编程广泛应用于网络通信领域,包括但不限于Web服务、即时通讯、网络游戏、远程控制等。 ## 1.3 Socket编程的基本原理 Socket编程基于网络套接字(socket)的概念,通过套接字建立连接、传输数据和关闭连接来实现通信。在Socket编程中,使用不同的协议(如TCP、UDP)来实现数据传输和通信

c语言桌子上有几堆糖果,每堆糖果的数量记录在一个整型数组 nums 中。我们可以每次选择任意一堆,拿走其中的一颗或者两颗糖果,求拿完所有糖果的最少次数。

好的,以下是 C 语言的实现代码: ```c #include <stdio.h> #include <stdlib.h> int min(int a, int b) { return a < b ? a : b; } int minSteps(int* nums, int numsSize) { int dp[numsSize + 1]; dp[0] = 0; dp[1] = 1; for (int i = 2; i <= numsSize; i++) { dp[i] = min(dp[i-1] + 1, dp[i-2] + 1)

供应链管理制度(全).ppt

供应链管理制度

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

Gunicorn监控和自动化运维

# 1. Gunicorn简介 ### 1.1 什么是Gunicorn Gunicorn是一个轻量级的Python WSGI HTTP服务器,可用于运行Django、Flask等Web应用。它通过将请求传递给应用程序的多个进程来实现并发处理,从而提高Web应用的性能和稳定性。 ### 1.2 Gunicorn的特点和优势 - **简单易用**:Gunicorn易于安装和配置,使用简单。 - **性能稳定**:Gunicorn能够有效管理并发连接,提供稳定的性能。 - **资源占用低**:相较于其他服务器,Gunicorn对资源的消耗相对较低。 - **支持异步处理**:Gunicorn

inno setup 怎么在脚本中设置程序的安装目录

在 Inno Setup 脚本中,你可以使用 `[Setup]` 节点中的 `DefaultDirName` 属性来设置应用程序的安装目录。默认情况下,`DefaultDirName` 属性设置为 `{pf}\{#MyAppPublisher}\{#MyAppName}`,其中 `{pf}` 表示“Program Files”目录,`{#MyAppPublisher}` 和 `{#MyAppName}` 分别表示你在脚本中定义的应用程序发布者和名称。 以下是一个示例脚本,演示如何设置应用程序的安装目录: ``` [Setup] AppName=MyApp AppVersion=1.0 De

中铁隧道集团机械设备管理规则.docx

中铁隧道集团机械设备管理规则.docx

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩