拓扑排序 *问题描述:编写函数实现图的拓扑排序。
时间: 2023-12-22 17:28:45 浏览: 153
拓扑排序是对有向无环图(DAG)进行排序的一种算法,它可以将图中的顶点以线性的顺序进行排列,使得图中任意一条边的终点在排列中都出现在起点之前。这种排序在很多应用中都有重要的作用,比如任务调度、依赖关系分析等。
下面是一个简单的C语言实现拓扑排序的函数:
```c
#include <stdio.h>
#define MAXV 100
int n; // 顶点数
int G[MAXV][MAXV]; // 邻接矩阵
int inDegree[MAXV]; // 入度
int topologicalSort() {
int i, j, k;
int result[MAXV]; // 存储拓扑排序的结果
int queue[MAXV]; // 用于存储入度为0的顶点
int front = 0, rear = 0; // 队列的头尾指针
// 初始化队列
for (i = 0; i < n; i++) {
if (inDegree[i] == 0) {
queue[rear++] = i;
}
}
// 拓扑排序
while (front < rear) {
int node = queue[front++];
result[front - 1] = node; // 将入度为0的顶点加入结果中
for (i = 0; i < n; i++) {
if (G[node][i] != 0) {
inDegree[i]--; // 将node的邻接点的入度减1
if (inDegree[i] == 0) {
queue[rear++] = i; // 如果邻接点的入度为0,则加入队列
}
}
}
}
// 输出拓扑排序结果
if (front == n) {
printf("拓扑排序结果:");
for (i = 0; i < n; i++) {
printf("%d ", result[i]);
}
printf("\n");
return 1; // 拓扑排序成功
} else {
printf("图中存在环,无法进行拓扑排序\n");
return 0; // 拓扑排序失败(图中存在环)
}
}
int main() {
// 读入顶点数和邻接矩阵
// ...
// 调用拓扑排序函数
if (topologicalSort()) {
// 拓扑排序成功
// 可以在这里输出排序后的结果或进行其他操作
} else {
// 拓扑排序失败
// 可以进行相应的处理
}
return 0;
}
```
在这个示例中,我们使用邻接矩阵来表示有向图,通过计算每个顶点的入度来进行拓扑排序。如果图中存在环,则无法进行拓扑排序。
阅读全文
相关推荐


















