stm32用pid算法控制电压

时间: 2023-05-30 19:06:47 浏览: 83
STM32可以使用PID算法控制电压,具体步骤如下: 1. 设置ADC通道,读取电压信号,并进行数字转换,得到电压值; 2. 设置PWM输出通道,控制电源输出电压; 3. 设置PID控制器参数:Kp、Ki、Kd,其中Kp为比例系数,Ki为积分系数,Kd为微分系数; 4. 在主循环中进行PID计算,根据实际电压值与设定电压值之间的误差,计算出控制输出值; 5. 将PID计算结果作为PWM占空比,控制电源输出电压; 6. 循环执行步骤4和5,实现电压控制。 需要注意的是,PID控制器的参数需要根据实际系统特性进行调整,以达到较好的控制效果。
相关问题

stm32用pid算法控制电压,用代码详细举例并说明每句的含义

以下是一个基于STM32的PID算法控制电压的代码示例: ```c #include "stm32f1xx.h" // 定义PID算法参数 #define Kp 1.0 #define Ki 0.5 #define Kd 0.1 // 定义电压测量值和设定值 float voltageMeasured = 0; float voltageSetpoint = 3.3; // 定义PID算法需要用到的变量 float error = 0, lastError = 0, integral = 0, derivative = 0; float output = 0; int main(void) { // 初始化系统时钟和GPIO SystemInit(); RCC->APB2ENR |= RCC_APB2ENR_IOPAEN; GPIOA->CRL &= ~(GPIO_CRL_MODE0 | GPIO_CRL_CNF0); GPIOA->CRL |= GPIO_CRL_MODE0_0; // 初始化定时器和PWM输出 RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; TIM1->PSC = 7199; // 计数器频率为10kHz TIM1->ARR = 999; // 计数器最大值为999,即10ms TIM1->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; // CH1 PWM模式1 TIM1->CCER |= TIM_CCER_CC1E; // CH1输出使能 TIM1->CR1 |= TIM_CR1_ARPE | TIM_CR1_CEN; // 启用自动重载寄存器和计数器 // 进入PID算法循环 while (1) { // 读取电压测量值 voltageMeasured = readVoltage(); // 计算误差 error = voltageSetpoint - voltageMeasured; // 计算积分项 integral += error; // 计算微分项 derivative = error - lastError; lastError = error; // 计算输出值 output = Kp * error + Ki * integral + Kd * derivative; // 将输出值限制在合理范围内 if (output > 1000) output = 1000; else if (output < 0) output = 0; // 将输出值转换为PWM占空比 TIM1->CCR1 = output; // 延时10ms,即计数器计数一个周期 delay_ms(10); } } float readVoltage() { // 读取ADC采样值并转换为电压值 float voltage = 3.3 * ADC1->DR / 4095; return voltage; } void delay_ms(uint32_t ms) { // 延时函数,使用系统滴答定时器 uint32_t tickstart = HAL_GetTick(); while ((HAL_GetTick() - tickstart) < ms); } ``` 代码中的每行含义如下: 1. `#include "stm32f1xx.h"`:包含STM32库文件。 2. `#define Kp 1.0`:定义PID算法中比例项的参数。 3. `#define Ki 0.5`:定义PID算法中积分项的参数。 4. `#define Kd 0.1`:定义PID算法中微分项的参数。 5. `float voltageMeasured = 0`:定义测量电压值的变量,并初始化为0。 6. `float voltageSetpoint = 3.3`:定义设定电压值的变量,并初始化为3.3V。 7. `float error = 0, lastError = 0, integral = 0, derivative = 0`:定义PID算法中需要用到的变量,并初始化为0。 8. `float output = 0`:定义输出PWM占空比的变量,并初始化为0。 9. `int main(void)`:主函数。 10. `SystemInit()`:初始化系统时钟。 11. `RCC->APB2ENR |= RCC_APB2ENR_IOPAEN`:启用GPIOA时钟。 12. `GPIOA->CRL &= ~(GPIO_CRL_MODE0 | GPIO_CRL_CNF0)`:将PA0的模式设置为推挽输出。 13. `GPIOA->CRL |= GPIO_CRL_MODE0_0`:设置PA0的输出模式为最大速率2MHz。 14. `RCC->APB2ENR |= RCC_APB2ENR_TIM1EN`:启用TIM1时钟。 15. `TIM1->PSC = 7199`:设置TIM1的预分频器,使计数器频率为10kHz。 16. `TIM1->ARR = 999`:设置TIM1的自动重载寄存器,使计数器最大值为999,即10ms。 17. `TIM1->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1`:设置TIM1的通道1的PWM模式为模式1。 18. `TIM1->CCER |= TIM_CCER_CC1E`:启用TIM1的通道1输出。 19. `TIM1->CR1 |= TIM_CR1_ARPE | TIM_CR1_CEN`:启用TIM1的自动重载寄存器和计数器。 20. `while (1)`:进入PID算法循环。 21. `voltageMeasured = readVoltage()`:读取电压测量值。 22. `error = voltageSetpoint - voltageMeasured`:计算误差。 23. `integral += error`:计算积分项。 24. `derivative = error - lastError`:计算微分项。 25. `lastError = error`:更新上一次误差值。 26. `output = Kp * error + Ki * integral + Kd * derivative`:计算输出值。 27. `if (output > 1000) output = 1000; else if (output < 0) output = 0`:将输出值限制在合理范围内。 28. `TIM1->CCR1 = output`:将输出值转换为PWM占空比,并输出到TIM1的通道1。 29. `delay_ms(10)`:延时10ms,即计数器计数一个周期。 30. `float readVoltage()`:读取ADC采样值并转换为电压值的函数。 31. `uint32_t tickstart = HAL_GetTick()`:记录当前系统滴答定时器的计数值。 32. `while ((HAL_GetTick() - tickstart) < ms)`:等待一定时间,即实现延时功能。

stm32用pid算法控制pwm

在STM32上使用PID算法来控制PWM,需要按照以下步骤进行: 1. 配置定时器:将PWM输出连接到一个定时器的输出通道上,并配置定时器的计数模式、时钟源等参数。 2. 配置PID控制器:需要设置PID控制器的比例系数、积分系数、微分系数等参数。同时,还需要设置控制器的采样周期,以便在每个采样时刻执行PID计算。 3. 读取反馈信号:使用一个ADC模块读取反馈信号,例如电机的转速或位置。 4. 计算控制量:使用PID算法计算出控制量,这个量可以是PWM占空比、电机电压、电机电流等。 5. 更新PWM输出:将计算出的控制量作为PWM的占空比进行更新,从而实现控制。 下面是一个简单的示例代码: ```c #include "stm32f4xx.h" // PID控制器参数 #define KP 0.5f #define KI 0.1f #define KD 0.2f // PWM输出参数 #define PWM_FREQ 1000 // PWM频率 #define PWM_DUTY 50 // PWM占空比 // 反馈信号采样周期 #define SAMPLE_TIME_MS 10 // PID控制器结构体 typedef struct { float kp, ki, kd; float setpoint; float error, last_error, sum_error; float output; } PIDController; // 初始化PID控制器 void pid_init(PIDController *pid, float kp, float ki, float kd, float setpoint) { pid->kp = kp; pid->ki = ki; pid->kd = kd; pid->setpoint = setpoint; pid->error = 0; pid->last_error = 0; pid->sum_error = 0; pid->output = 0; } // 计算PID控制器输出 void pid_compute(PIDController *pid, float feedback) { // 计算误差 pid->error = pid->setpoint - feedback; // 计算误差积分项 pid->sum_error += pid->error * SAMPLE_TIME_MS / 1000.0f; // 计算误差微分项 float delta_error = (pid->error - pid->last_error) / (SAMPLE_TIME_MS / 1000.0f); // 计算控制器输出 pid->output = pid->kp * pid->error + pid->ki * pid->sum_error + pid->kd * delta_error; // 保存上一次误差 pid->last_error = pid->error; } int main() { // 配置PWM输出 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); GPIO_InitTypeDef gpio_init; gpio_init.GPIO_Pin = GPIO_Pin_8; gpio_init.GPIO_Mode = GPIO_Mode_AF; gpio_init.GPIO_Speed = GPIO_Speed_50MHz; gpio_init.GPIO_OType = GPIO_OType_PP; gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &gpio_init); GPIO_PinAFConfig(GPIOA, GPIO_PinSource8, GPIO_AF_TIM1); TIM_TimeBaseInitTypeDef tim_init; tim_init.TIM_Period = SystemCoreClock / PWM_FREQ - 1; tim_init.TIM_Prescaler = 0; tim_init.TIM_ClockDivision = 0; tim_init.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM1, &tim_init); TIM_OCInitTypeDef oc_init; oc_init.TIM_OCMode = TIM_OCMode_PWM1; oc_init.TIM_OutputState = TIM_OutputState_Enable; oc_init.TIM_Pulse = (SystemCoreClock / PWM_FREQ - 1) * PWM_DUTY / 100; oc_init.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM1, &oc_init); TIM_Cmd(TIM1, ENABLE); // 配置ADC采样 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); gpio_init.GPIO_Pin = GPIO_Pin_0; gpio_init.GPIO_Mode = GPIO_Mode_AN; GPIO_Init(GPIOC, &gpio_init); ADC_CommonInitTypeDef adc_common_init; adc_common_init.ADC_Mode = ADC_Mode_Independent; adc_common_init.ADC_Prescaler = ADC_Prescaler_Div2; adc_common_init.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; adc_common_init.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&adc_common_init); ADC_InitTypeDef adc_init; adc_init.ADC_Resolution = ADC_Resolution_12b; adc_init.ADC_ScanConvMode = DISABLE; adc_init.ADC_ContinuousConvMode = ENABLE; adc_init.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; adc_init.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; adc_init.ADC_DataAlign = ADC_DataAlign_Right; adc_init.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &adc_init); ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_480Cycles); ADC_Cmd(ADC1, ENABLE); // 初始化PID控制器 PIDController pid; pid_init(&pid, KP, KI, KD, 100); // 主循环 while (1) { // 读取反馈信号 ADC_SoftwareStartConv(ADC1); while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); float feedback = ADC_GetConversionValue(ADC1); // 计算PID控制器输出 pid_compute(&pid, feedback); // 更新PWM输出 TIM_SetCompare1(TIM1, (SystemCoreClock / PWM_FREQ - 1) * pid.output / 100); } } ``` 注意,在实际应用中,需要根据具体的控制对象和控制要求来选择PID控制器的参数,以及PWM输出的频率和占空比。同时,还需要对反馈信号进行滤波和校准,以提高控制精度和稳定性。

相关推荐

最新推荐

recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的最佳实践:模型训练、超参数调优与部署优化,打造高性能目标检测系统

![:YOLO目标检测算法的最佳实践:模型训练、超参数调优与部署优化,打造高性能目标检测系统](https://img-blog.csdnimg.cn/20201024153508415.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1NNRjA1MDQ=,size_16,color_FFFFFF,t_70) # 1. YOLO目标检测算法概述 **1.1 YOLO算法简介** YOLO(You Only Look Once)是一种
recommend-type

pecl-memcache-php7 下载

你可以通过以下步骤来下载 pecl-memcache-php7: 1. 打开终端或命令行工具。 2. 输入以下命令:`git clone https://github.com/websupport-sk/pecl-memcache.git` 3. 进入下载的目录:`cd pecl-memcache` 4. 切换到 php7 分支:`git checkout php7` 5. 构建和安装扩展:`phpize && ./configure && make && sudo make install` 注意:在执行第5步之前,你需要确保已经安装了 PHP 和相应的开发工具。
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩