使用pytorch,基于多尺度自编码网络,实现红外与可见光图像融合的模型,包括训练、测试、验证的代码
时间: 2024-01-22 15:19:25 浏览: 74
使用深度学习框架(Pytorch) 的 红外和可见光图像融合_Jupyter_python代码_下载
5星 · 资源好评率100%
这是一个比较复杂的任务,需要一定的深度学习背景知识和编程能力。以下是一个简单的参考代码,仅供参考:
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import os
```
然后,定义一个数据集类,用于加载训练和测试数据:
```python
class FusionDataset(Dataset):
def __init__(self, data_dir, transform=None):
self.data_dir = data_dir
self.transform = transform
self.image_files = os.listdir(data_dir)
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
image_file = os.path.join(self.data_dir, self.image_files[idx])
image = Image.open(image_file)
if self.transform:
image = self.transform(image)
return image
```
接下来,定义一个多尺度自编码器网络模型:
```python
class FusionModel(nn.Module):
def __init__(self):
super(FusionModel, self).__init__()
self.encoder1 = nn.Sequential(
nn.Conv2d(3, 32, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(32, 64, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, stride=2)
)
self.encoder2 = nn.Sequential(
nn.Conv2d(3, 32, 5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(32, 64, 5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2, stride=2)
)
self.decoder1 = nn.Sequential(
nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 3, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()
)
self.decoder2 = nn.Sequential(
nn.ConvTranspose2d(64, 32, 5, stride=2, padding=2, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 3, 5, stride=2, padding=2, output_padding=1),
nn.Sigmoid()
)
def forward(self, x):
x1 = self.encoder1(x)
x2 = self.encoder2(x)
y1 = self.decoder1(x1)
y2 = self.decoder2(x2)
y = torch.cat((y1, y2), dim=1)
return y
```
然后,我们可以定义一些超参数和数据增强方式:
```python
num_epochs = 50
batch_size = 16
learning_rate = 0.001
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
```
接下来,我们可以加载训练和测试数据,并创建一个模型实例:
```python
train_dataset = FusionDataset('train/', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = FusionDataset('test/', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
model = FusionModel()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
```
最后,我们可以进行训练和测试:
```python
for epoch in range(num_epochs):
model.train()
for i, data in enumerate(train_loader):
optimizer.zero_grad()
inputs = data
outputs = model(inputs)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
model.eval()
with torch.no_grad():
total_loss = 0
for i, data in enumerate(test_loader):
inputs = data
outputs = model(inputs)
loss = criterion(outputs, inputs)
total_loss += loss.item()
avg_loss = total_loss / len(test_loader)
print('Epoch [{}/{}], Test Loss: {:.4f}'.format(epoch+1, num_epochs, avg_loss))
```
这是一个简单的基于多尺度自编码网络的红外与可见光图像融合模型,可以根据实际需求进行修改和优化。
阅读全文