graph.to_dense是什么
时间: 2024-02-26 14:33:32 浏览: 113
graph.to_dense()是一个PyTorch Geometric (PyG)库中的函数,用于将稀疏图形转换为密集图形。在机器学习中,图形通常是由节点和边组成的,而且由于图形的稀疏性质,只有一小部分节点之间存在边。to_dense()函数将稀疏图形转换为密集图形,即将所有节点之间都加上边,并返回一个邻接矩阵表示的稠密图形。这样可以方便地对图形进行计算,并且可以使用基于矩阵的算法进行操作。
相关问题
drug_graph_label = drug_graph.to_dense()
这行代码将drug_graph稀疏张量转换为密集张量,即将稀疏矩阵转换为常规的二维矩阵。to_dense()函数将稀疏张量的值复制到一个密集张量中,其中缺少的值会被填充为0。这个密集张量drug_graph_label中的每个元素的值表示对应位置上的边权重。
需要注意的是,当稀疏张量中非零元素较少时,to_dense()操作会导致存储空间的大量浪费。因此,在处理稀疏张量时,应该尽量使用稀疏张量的算法,避免将其转换为密集张量。只有在必要时,才应该将稀疏张量转换为密集张量进行计算。
drug_graph_label = drug_graph.to_dense() drug_random_mask = torch.rand_like(drug_graph_label) train_mask = drug_random_mask < train_ratio valid_mask = (drug_random_mask < (train_ratio + valid_ratio)) * (drug_random_mask >= train_ratio) test_mask = drug_random_mask >= (train_ratio + valid_ratio)解释一下
这段代码是为了将药物分子图数据集划分为训练集、验证集和测试集,并且使用随机掩码来进行划分。
首先,将药物分子图数据集转换为稠密矩阵形式,即 `drug_graph.to_dense()`。
接下来,使用与 `drug_graph_label` 相同形状的随机张量 `drug_random_mask`,其中随机值在 0 到 1 之间。这个随机掩码将被用于划分数据集。
然后,使用 `train_ratio` 将 `drug_random_mask` 划分为训练集,即 `train_mask = drug_random_mask < train_ratio`,其中小于 `train_ratio` 的随机值将被视为训练集。这个值通常是一个介于 0 到 1 之间的小数,例如 0.8 表示将 80% 的数据用于训练。
接下来,使用 `valid_ratio` 将 `drug_random_mask` 划分为验证集,即 `valid_mask = (drug_random_mask < (train_ratio + valid_ratio)) * (drug_random_mask >= train_ratio)`,其中小于 `train_ratio + valid_ratio` 且大于等于 `train_ratio` 的随机值将被视为验证集。这个值通常也是一个介于 0 到 1 之间的小数,例如 0.1 表示将 10% 的数据用于验证。
最后,将剩余的数据作为测试集,即 `test_mask = drug_random_mask >= (train_ratio + valid_ratio)`。
这样就可以将药物分子图数据集划分为训练集、验证集和测试集了。
阅读全文