下面是一个用c++编写的程序,用于求解任意两座城市之间的最短路径。该程序使用

时间: 2023-12-06 08:00:35 浏览: 111
下面是一个用C编写的程序,用于求解任意两座城市之间的最短路径。该程序使用了Dijkstra算法。 Dijkstra算法是一种经典的用于求解单源最短路径的算法,在图论中有广泛的应用。该算法从起始城市开始,逐渐确定离起始城市最近的下一个城市,直到找到目标城市为止,同时记录下到达每个城市的最短路径。 程序首先需要用户输入城市之间的距离矩阵,即每两个城市之间的距离。接着,用户需要输入起始城市和目标城市。程序会根据输入的距离矩阵和城市信息,使用Dijkstra算法计算出最短路径。 程序输出的结果包括最短路径的长度以及路径上经过的城市。例如,对于起始城市A和目标城市D,程序会输出最短路径长度为5,路径为A -> B -> D。 该程序还提供了一个函数来打印整个距离矩阵,以便用户可以查看城市之间的距离关系。 该程序的时间复杂度为O(n^2),其中n为城市的数量。在处理大规模城市网络时,该程序可能需要较长的运行时间。 需要注意的是,该程序仅仅求解了单源最短路径问题,即从一个城市到另一个城市的最短路径。如果需要求解多源最短路径问题,可以采用Floyd-Warshall算法等其他算法。
相关问题

使用Floyd算法求解任意两结点的最短路径问题c++

Floyd算法是一种用于求解任意两结点最短路径的动态规划算法。下面是使用C++实现Floyd算法求解最短路径问题的代码示例: ```cpp #include <iostream> #include <vector> #define INF 99999 // 使用Floyd算法求解任意两结点的最短路径 void floydWarshall(std::vector<std::vector<int>>& graph, int n) { std::vector<std::vector<int>> dist(n, std::vector<int>(n)); // 初始化距离矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { dist[i][j] = graph[i][j]; } } // 更新距离矩阵 for (int k = 0; k < n; k++) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; } } } } // 打印最短路径 std::cout << "最短路径矩阵:" << std::endl; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (dist[i][j] == INF) { std::cout << "INF "; } else { std::cout << dist[i][j] << " "; } } std::cout << std::endl; } } int main() { int n = 4; // 结点数量 std::vector<std::vector<int>> graph = { {0, 5, INF, 10}, {INF, 0, 3, INF}, {INF, INF, 0, 1}, {INF, INF, INF, 0} }; floydWarshall(graph, n); return 0; } ``` 以上代码中,`graph` 是一个邻接矩阵表示的图,`INF` 表示两个结点之间不存在直接连接。`floydWarshall` 函数使用Floyd算法计算任意两结点的最短路径,并将结果存储在 `dist` 矩阵中。最后,我们打印出最短路径矩阵。 在 `main` 函数中,我们测试了一个示例图,并输出了最短路径矩阵。 希望这个代码示例能够帮助到你!

用1表示死路,用0表示通路,使用C++语言编写一个简单的用栈求解迷宫问题所有路径及最短路径程序

以下是一个简单的用栈求解迷宫问题所有路径及最短路径的C++程序: ```c++ #include <iostream> #include <stack> using namespace std; const int N = 5; // 迷宫大小为5*5 int maze[N][N] = { {0, 0, 1, 0, 1}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {1, 1, 0, 0, 0}, {0, 0, 1, 0, 0} }; // 迷宫地图,0表示通路,1表示障碍物 struct Node { int x, y, step; Node(int _x, int _y, int _step) : x(_x), y(_y), step(_step) {} // 定义一个结构体表示节点的坐标和步数 }; stack<Node> s; // 定义一个栈存储节点 void printPath(stack<Node> path) { // 打印路径 stack<Node> tmp; while (!path.empty()) { tmp.push(path.top()); path.pop(); } while (!tmp.empty()) { cout << "(" << tmp.top().x << ", " << tmp.top().y << ") "; tmp.pop(); } cout << endl; } void findPath() { int dx[4] = {0, 1, 0, -1}; // 定义四个方向 int dy[4] = {1, 0, -1, 0}; s.push(Node(0, 0, 0)); // 将起点压入栈中 while (!s.empty()) { Node cur = s.top(); s.pop(); if (cur.x == N-1 && cur.y == N-1) { // 到达终点 printPath(s); // 打印路径 cout << "步数为:" << cur.step << endl; // 打印步数 return; } for (int i = 0; i < 4; i++) { // 遍历四个方向 int nx = cur.x + dx[i]; int ny = cur.y + dy[i]; if (nx >= 0 && nx < N && ny >= 0 && ny < N && maze[nx][ny] == 0) { // 判断是否越界和是否是通路 s.push(Node(nx, ny, cur.step+1)); // 将新节点压入栈中 maze[nx][ny] = 1; // 标记为已经走过 } } } } int main() { findPath(); return 0; } ``` 代码中使用了一个栈来存储节点,每次从栈中取出一个节点,判断它是否到达终点,如果到达终点则输出路径和步数,否则遍历四个方向,将新节点压入栈中,同时标记为已经走过。这里只求了一条最短路径,如果要求所有的最短路径,可以使用广度优先搜索算法。
阅读全文

相关推荐

最新推荐

recommend-type

C++求所有顶点之间的最短路径(用Dijkstra算法)

C++求所有顶点之间的最短路径(用Dijkstra算法) 以下是从给定文件信息中生成的相关知识点: 1. Dijkstra算法的定义和原理: Dijkstra算法是一种常用的最短路径算法,用于计算图中从一个顶点到所有其他顶点的最短...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

在上述的应用示例中,Dijkstra算法被用于一个校园导游程序,帮助客人查询任意两个景点之间的最短路径。程序首先定义了图的邻接矩阵,然后通过Dijkstra算法计算最短路径,并将结果展示给用户。程序结构包括主界面、...
recommend-type

Dijkstra算法最短路径的C++实现与输出路径

"Dijkstra算法最短路径的C++实现与输出路径" Dijkstra算法是解决单源最短路径问题的经典算法, 由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。该算法可以解决从某个源点到其他所有顶点的最短路径问题。 ...
recommend-type

C++计算图任意两点间的所有路径

主要为大家详细介绍了C++求图任意两点间的所有路径,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

使用C语言编写圣诞表白程序

在本文中,我们将探讨如何使用C语言编写一个简单的圣诞表白程序。这个程序可以在圣诞节期间向你的心仪对象表达情感,通过代码的方式展示你的独特心意。以下是一些关键知识点和代码实现的细节: 1. **C语言基础**:...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。