已知Ax=b,其中A是一个nxn的方阵,x是一个n维列向量,b是任意一个n维列向量。先用高斯约旦法求出x,然后提取x的系数,求出A的逆矩阵。如何用python实现
时间: 2024-02-24 22:54:35 浏览: 121
可以使用Python的NumPy库来实现高斯约旦法和矩阵求逆的操作。下面是一个示例代码:
```python
import numpy as np
# 定义高斯约旦法函数
def gauss_jordan(A, b):
n = len(A)
# 构造增广矩阵
aug = np.concatenate((A, b), axis=1)
# 高斯消元
for i in range(n):
# 将对角线元素归一
aug[i] = aug[i] / aug[i, i]
# 将下方元素消成0
for j in range(i+1, n):
aug[j] = aug[j] - aug[i] * aug[j, i]
# 将上方元素消成0
for j in range(i):
aug[j] = aug[j] - aug[i] * aug[j, i]
# 返回解向量
return aug[:, n:]
# 求解逆矩阵
def inverse_matrix(A):
n = len(A)
# 构造单位矩阵
I = np.eye(n)
# 对每一列进行高斯约旦消元
cols = []
for i in range(n):
col = gauss_jordan(A, I[:, i])
cols.append(col.flatten())
# 将列向量拼成矩阵
inv = np.array(cols).T
return inv
# 例子
A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = np.array([[1], [2], [3]])
x = gauss_jordan(A, b)
print("x = \n", x)
A_inv = inverse_matrix(A)
print("A_inv = \n", A_inv)
```
这个例子中,我们定义了一个`gauss_jordan`函数,用来实现高斯约旦法求解方程组的解。然后我们定义了一个`inverse_matrix`函数,用来求解矩阵的逆。在`inverse_matrix`函数中,我们对每一列向量都使用高斯约旦法求解,最终将所有的列向量拼成一个矩阵,即为原矩阵的逆矩阵。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)