tuple([self.b * _ for _ in (x, y)])

时间: 2024-01-25 12:04:35 浏览: 16
这是一个 Python 表达式,它使用了列表推导式来生成一个元组。假设这个表达式出现在某个类的方法中,self.b 是这个类的一个属性,x 和 y 是方法的两个参数。列表推导式中的 for 循环遍历了一个元组 (x, y),并将每个元素乘以 self.b 得到一个新的列表。最后,这个列表被传入 tuple() 函数中,生成一个包含两个元素的元组。
相关问题

yolov7 common.py 源码

以下是 YOLOv7 的 common.py 源码: ```python import math import torch.nn.functional as F import torch.nn as nn import torch def make_divisible(x, divisor): # Returns x evenly divisible by divisor return math.ceil(x / divisor) * divisor def autopad(k, p=None): # kernel, padding # Pad to 'same' if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] return p class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, stride=s, padding=autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.Hardswish() if act else nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 self.identity = nn.Identity() if self.add else None def forward(self, x): return self.identity(x) + self.cv2(self.cv1(x)) class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13)): super(SPP, self).__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class DWConv(nn.Module): # Depthwise convolution def __init__(self, c1, c2, k=1, s=1, p=None): super(DWConv, self).__init__() self.conv = nn.Conv2d(c1, c1, k, stride=s, padding=autopad(k, p), groups=c1, bias=False) self.bn = nn.BatchNorm2d(c1) self.act = nn.Hardswish() self.project = nn.Conv2d(c1, c2, 1, bias=False) self.bn2 = nn.BatchNorm2d(c2) self.act2 = nn.Hardswish() def forward(self, x): return self.act2(self.bn2(self.project(self.act(self.bn(self.conv(x)))))) class Focus(nn.Module): # Focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): super(Focus, self).__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class Detect(nn.Module): # Detect layer def __init__(self, nc, anchors): super(Detect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.na = len(anchors) # number of anchors self.anchors = torch.tensor(anchors).float().view(self.na, -1) self.anchors /= self.anchors.sum(1).view(self.na, 1) # normalized anchors self.register_buffer("anchor_grid", self.anchors.clone().view(1, -1, 1, 1)) self.m = nn.Conv2d(self.no * self.na, self.no * self.na, 1) # prediction conv def forward(self, x): # x(bs,255,h,w) -> p(bs,3,85,h,w) bs, _, ny, nx = x.shape device, dtype = x.device, x.dtype stride = self.anchor_grid.device / torch.tensor([nx, ny])[None, :, None, None].to(device) grid = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) y = torch.stack(grid, 2).to(device).float() x = (x.sigmoid() * 2. - 0.5) * stride # x(?,255,?,?) --sig--> x(?,255,?,?) --*2-0.5--> x(?,255,?,?) --*stride--> x(?,255,?,?) y = (y + 0.5) * stride # y(?,2,?,?) --+0.5--> y(?,2,?,?) --*stride--> y(?,2,?,?) xy = torch.stack([x, y], 2).view(bs, 2, self.na * ny * nx).permute(0, 2, 1).contiguous().view(bs, self.na * ny * nx, 2) x = self.m(x.flatten(2).permute(0, 2, 1)).view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # x(bs,na,ny,nx,na) --view--> x(bs,na,ny,nx,no) --permute--> x(bs,na,ny,nx,no) if not self.training: x[..., 4:] = x[..., 4:].sigmoid() return x else: # train return x, xy, self.anchor_grid.repeat(bs, 1, ny, nx) class Model(nn.Module): # YOLOv7 model https://github.com/WongKinYiu/yolov7 def __init__(self, nc=80, anchors=((10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)), ch=[256, 512, 1024, 2048], depth=0.33): super(Model, self).__init__() assert depth in [0.33, 0.67, 1.0] self.depth = depth # model depth multiplier self.grid = [torch.zeros(1)] * 5 # init grid self.stride = torch.tensor([8., 16., 32., 64., 128.]) self.create_backbone(ch) self.create_neck() self.create_head(nc, anchors) def forward(self, x): z = [] for i in range(5): x = self.backbone[i](x) z.append(x) x = self.neck(z) return self.head(x) def create_backbone(self, ch): # darknet backbone self.backbone = nn.ModuleList([Focus(3, ch[0], 3), Conv(ch[0], ch[1], 3, 2), Bottleneck(ch[1], ch[2]), Conv(ch[2], ch[3], 3, 2), Bottleneck(ch[3], ch[4]), Conv(ch[4], ch[5], 3, 2), SPP(ch[5], ch[5]), Bottleneck(ch[5], ch[6]), Conv(ch[6], ch[7], 1)]) c2 = make_divisible(ch[7] * self.depth) # ch_last self.backbone.append(Bottleneck(ch[7], c2, False)) self.out_channels = [c2, ch[4], ch[2], ch[0]] def create_neck(self): # FPN-like attentional output self.neck = nn.Sequential( Concat(), Conv(self.out_channels[0], self.out_channels[0], 1), DWConv(self.out_channels[0], self.out_channels[1], 3, s=2), DWConv(self.out_channels[1], self.out_channels[2], 3, s=2), DWConv(self.out_channels[2], self.out_channels[3], 3, s=2), SPP(self.out_channels[3], self.out_channels[3]), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), ) def create_head(self, nc, anchors): # detection head self.head = nn.Sequential( DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), Concat(), Conv(self.out_channels[3] * 4, self.out_channels[3], 1), nn.Conv2d(self.out_channels[3], len(anchors) * (nc + 5), 1, bias=True), Detect(nc, anchors)) def attempt_load(weights, map_location=None, inplace=True): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a if isinstance(weights, (list, tuple)): # Load a list of models (ensemble) ensemble = nn.ModuleList() for w in weights: model = Model() model.to(next(w.parameters()).device) try: ckpt = torch.load(w, map_location=map_location) # load state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter model.load_state_dict(state_dict, strict=False) # load print(f"Transferred {len(state_dict)} from {w}") except: print(f"Error loading {w}") ensemble.append(model.eval()) return ensemble else: # Load a single model model = Model() model.to(next(weights.parameters()).device) try: ckpt = torch.load(weights, map_location=map_location) # load state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter model.load_state_dict(state_dict, strict=False) # load print(f"Transferred {len(state_dict)} from {weights}") except: print(f"Error loading {weights}") return model.eval() ```

生成基于栅格地图的bilstm改进的A*算法的路径规划python代码

以下是基于栅格地图的BiLSTM改进的A*算法的路径规划Python代码: ```python import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F # 定义BiLSTM模型 class BiLSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_classes): super(BiLSTM, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True) self.fc = nn.Linear(hidden_size*2, num_classes) def forward(self, x): h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out # 定义A*算法类 class AStar: def __init__(self, map_size, start, end): self.map_size = map_size self.start = start self.end = end self.open_list = [] self.close_list = [] self.father = {} self.g_score = {} self.h_score = {} self.f_score = {} self.bi_lstm = None # 定义启发函数 def heuristic(self, a, b): return np.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2) # 定义判断点是否在地图内 def in_map(self, point): return point[0]>=0 and point[0]<self.map_size[0] and point[1]>=0 and point[1]<self.map_size[1] # 定义判断点是否可通过 def passable(self, point, map): return map[point[0]][point[1]]==0 # 定义获取相邻点列表 def get_neighbors(self, point, map): neighbors = [] for i in [-1, 0, 1]: for j in [-1, 0, 1]: if i==0 and j==0: continue neighbor = (point[0]+i, point[1]+j) if self.in_map(neighbor) and self.passable(neighbor, map): neighbors.append(neighbor) return neighbors # 定义获取路径 def get_path(self, current): path = [] while current: path.append(current) current = self.father.get(current) path.reverse() return path # 定义A*算法函数 def astar(self, map): self.open_list.append(self.start) self.g_score[self.start] = 0 self.h_score[self.start] = self.heuristic(self.start, self.end) self.f_score[self.start] = self.h_score[self.start] while self.open_list: current = min(self.open_list, key=lambda x:self.f_score[x]) if current == self.end: return self.get_path(current) self.open_list.remove(current) self.close_list.append(current) for neighbor in self.get_neighbors(current, map): if neighbor in self.close_list: continue g = self.g_score[current] + self.heuristic(current, neighbor) if neighbor not in self.open_list: self.open_list.append(neighbor) self.h_score[neighbor] = self.heuristic(neighbor, self.end) self.g_score[neighbor] = g self.f_score[neighbor] = self.g_score[neighbor] + self.h_score[neighbor] self.father[neighbor] = current elif g < self.g_score[neighbor]: self.g_score[neighbor] = g self.f_score[neighbor] = self.g_score[neighbor] + self.h_score[neighbor] self.father[neighbor] = current return None # 定义训练BiLSTM模型函数 def train(self, x_train, y_train, num_epochs=100, learning_rate=0.001): self.bi_lstm = BiLSTM(2, 128, 2, 2).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(self.bi_lstm.parameters(), lr=learning_rate) for epoch in range(num_epochs): inputs = torch.Tensor(x_train).to(device) targets = torch.Tensor(y_train).long().to(device) optimizer.zero_grad() outputs = self.bi_lstm(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 定义预测函数 def predict(self, x): inputs = torch.Tensor(x).to(device) outputs = self.bi_lstm(inputs) _, predicted = torch.max(outputs.data, 1) return predicted.cpu().numpy()[0] # 定义路径规划函数 def path_planning(self, map, smooth=False): x_train = [] y_train = [] for i in range(self.map_size[0]): for j in range(self.map_size[1]): if (i,j) == self.start or (i,j) == self.end: continue x_train.append([i,j]) y_train.append(int(map[i][j])) self.train(x_train, y_train) current = self.start path = [current] while current != self.end: neighbors = self.get_neighbors(current, map) if not neighbors: return None features = [] for neighbor in neighbors: feature = [neighbor[0], neighbor[1], self.heuristic(neighbor, self.end)] feature.append(self.predict([feature])) features.append(feature) features = np.array(features) index = np.argmin(features[:,2] + features[:,3]*0.5) next = tuple(features[index][:2].astype(int)) path.append(next) current = next if smooth: return self.smooth_path(path, map) else: return path # 定义路径平滑函数 def smooth_path(self, path, map): smooth_path = [path[0]] i = 0 while i < len(path)-1: j = i+1 while j < len(path)-1: if not self.passable(path[i], path[j], map): break j += 1 smooth_path.append(path[j-1]) i = j-1 smooth_path.append(path[-1]) return smooth_path ``` 使用方法: ```python # 定义地图大小、起点、终点 map_size = (10, 10) start = (1, 1) end = (8, 8) # 定义地图 map = np.zeros(map_size) map[3:7, 4:8] = 1 # 定义A*算法对象 astar = AStar(map_size, start, end) # 进行路径规划 path = astar.path_planning(map, smooth=True) print(path) ``` 其中,`map_size`为地图大小,`start`为起点坐标,`end`为终点坐标,`map`为地图,0表示可通过的点,1表示障碍物。`path_planning`函数的第二个参数`smooth`表示是否对路径进行平滑处理。

相关推荐

最新推荐

recommend-type

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx
recommend-type

华为OD机试D卷 - 机场航班调度程序 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

基于FPGA读取设计的心电图代码源码+全部资料齐全.zip

【资源说明】 基于FPGA读取设计的心电图代码源码+全部资料齐全.zip基于FPGA读取设计的心电图代码源码+全部资料齐全.zip 【备注】 1、该项目是高分课程设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过mac/window10/11/linux测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip

【资源说明】 基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

华为OD机试D卷 - 数的分解 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。