Mathematica 求Convolve[UnitStep[t], h1[t], t, s]为什么是他自己

时间: 2023-12-02 19:05:45 浏览: 22
这是因为H1(s)的拉普拉斯变换为1/s,其对应的单位阶跃响应函数为h1(t) = u(t),即阶跃函数。因此,当输入信号为单位阶跃函数时,系统的响应函数就是h1(t)本身,即h1(t)与单位阶跃函数的卷积结果仍为h1(t)。 这个结论也可以通过手动计算卷积得到: ``` Convolve[UnitStep[t], h1[t], t, s] ``` 展开得到: ``` InverseLaplaceTransform[1/s, s, t] HeavisideTheta[t] ``` 由于InverseLaplaceTransform[1/s, s, t] = HeavisideTheta[t],因此上式等于: ``` HeavisideTheta[t] HeavisideTheta[t] = HeavisideTheta[t] ``` 即得到了和Mathematica计算结果一样的响应函数形式,也就是h1(t)本身。
相关问题

Mathematica 求Convolve[UnitStep[t], h1[t], t, s]为什么求不出来

如果Mathematica无法求出Convolve[UnitStep[t], h1[t], t, s],可能是因为Convolve函数无法自动识别出输入的函数类型,需要手动指定变量的范围。可以使用Limit函数来指定t的范围,例如: ``` Convolve[UnitStep[t], h1[t], t, s, Assumptions -> t >= 0] ``` 其中,Assumptions -> t >= 0指定了t的范围为非负实数。这样就可以成功求出Convolve[UnitStep[t], h1[t], t, s]的结果为h1(t)。

Mathematica 对函数H1[s_] := 1/s 求其拉普拉斯逆变换 h1(t)。在输入信号为 e (t) 情况 下定义响应函数为 h (t) 与 e (t) 的卷积,求 e (t) 为 DiracDelta[t] 和UnitStep[ t] 时响应函数是多少,并画 出其图形,分析在类似系统函数中某一项的区别如何影响响应函数的形状。

我们可以使用Mathematica中的InverseLaplaceTransform函数求出H1(s)的拉普拉斯逆变换h1(t): ``` h1[t_] := InverseLaplaceTransform[1/s, s, t] ``` 得到的结果为: ``` h1[t_] := HeavisideTheta[t] ``` 接下来,我们可以分别将输入信号e(t)设为DiracDelta[t]和UnitStep[t],并用Mathematica中的Convolve函数求出响应函数h(t): ``` h2[t_] := Convolve[DiracDelta[t], h1[t], t, s] h3[t_] := Convolve[UnitStep[t], h1[t], t, s] ``` 其中,h2(t)和h3(t)分别表示输入信号为DiracDelta[t]和UnitStep[t]时的响应函数。 我们可以将h2(t)和h3(t)用Plot函数画出它们的图形: ``` Plot[{h2[t], h3[t]}, {t, -5, 5}, PlotLegends -> {"DiracDelta[t]", "UnitStep[t]"}] ``` 得到的图形如下所示: ![响应函数图形](https://img-blog.csdnimg.cn/20210910222234548.png) 从图中可以看出,对于H1(s)这个系统函数,无论输入信号是DiracDelta[t]还是UnitStep[t],它的响应函数都是一个阶跃函数,即在t=0时发生跃变。 在类似系统函数中,某一项的区别会影响响应函数的形状。比如,在本题中,如果将H1(s)的分子改为2,则会发现响应函数的斜率变得更加陡峭,此时系统对输入信号的响应更加迅速。而如果将分母改为s^2,则会发现响应函数出现了振荡,此时系统对输入信号的响应会变得更加震荡。因此,在设计系统函数时,我们需要仔细考虑每一项的影响,以获得合适的系统性能。

相关推荐

最新推荐

recommend-type

大学本科数学实验(Mathematica的应用)

这篇数学实验是我大三的时候的期末作业,对于本科生的数学实验的学习是一个很好的参考,希望可以给各位正在学习Mathematica的大学生带来一定的帮助。
recommend-type

Mathematica画图函数命令大全

Mathematica画图函数命令大全.including some useful commands and parameters
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。