#include<iostream> #include<stdio.h> #include<malloc.h> using namespace std;//声明命名空间 //链栈 typedef struct stacknode{ int data;//数据域 struct stacknode *next;//指针域 }stacknode,*LinkStack; //初始化栈,创建一个空栈 void initLinkStack(LinkStack &L){ L=NULL;//空链站 } //判断栈是否为空 int emptyLinkStack(LinkStack L){ if(L==NULL){ return 0; }else{ return 1; } } //入栈 void pushLinkStack(LinkStack &L,int e){ LinkStack p; p=(LinkStack)malloc(sizeof(stacknode)); p->data=e; p->next=L; L=p; } //出栈 void popLinkStack(LinkStack &L,int &e){ LinkStack p; p=L; e=L->data;//取出栈顶元素给e L=L->next; delete(p); } //十进制转2、8、16进制,采用除基倒取余法 void numberConversionL(int oNumber,int cvNumber){ LinkStack L; //创建栈 int x; initLinkStack(L); //初始化栈 while(oNumber){ x=oNumber%cvNumber; pushLinkStack(L,x);//余数入栈 oNumber=oNumber/cvNumber; } //余数出栈 while(emptyLinkStack(L)){ popLinkStack(L,x); switch(x){ case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9:cout<<x; break; case 10:cout<<"A"; break; case 11:cout<<"B"; break; case 12:cout<<"C"; break; case 13:cout<<"D"; break; case 14:cout<<"E"; break; case 15:cout<<"F"; break; } } } //主函数 int main(){ int oNumber,cvNumber; int oNumberL,cvNumberL; int choose; cout<<"请选择所需功能\n1.使用链栈转换\n2.退出程序"; cout<<endl; //换行 cin>>choose; while(choose!=2){ switch(choose){ case 1:{ cout<<"请输入要转换的十进制数:"<<endl; cin>>oNumberL; cout<<"请输入要转换至的进制,仅限输入2、8以及16:"<<endl; cin>>cvNumberL; numberConversionL(oNumberL,cvNumberL); break; } default: cout<<"\n!!!您的选择不正确,请重新选择!!!\n"; } cout<<endl; //换行 cout<<"请选择所需功能\n1.使用链栈转换\n2.退出程序"; cout<<endl; //换行 cin>>choose; } return 0; }这段代码数制转换器的研究背景和意义

时间: 2024-04-23 20:23:18 浏览: 6
这段代码实现了一个数制转换器,可以将十进制数转换为二进制、八进制或十六进制。数制转换在计算机领域中非常重要,因为不同的进制可以用不同的位数来表示同一个数,而在计算机中,位数的变化会对数据的存储和处理方式产生影响。例如,在二进制中,每一位只能是0或1,而在十进制中,每一位可以是0-9中的任意一个数字。因此,当需要将不同进制的数据进行运算或比较时,需要将它们转换为相同的进制。此外,数制转换也是程序设计和计算机科学中的基础知识之一。
相关问题

将以下c++代码转换为c语言#include <iostream> #include <vector> #include <algorithm> #include <utility> using namespace std; int main() { int n; cin >> n; // 输入集合 A 的元素个数 vector<int> elements(n); for (int i = 0; i < n; ++i) { cin >> elements[i]; // 输入集合 A 的元素 } vector<pair<int, int> > edges; // 存储边的向量 // 遍历集合 A 中的元素 for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { // 判断是否满足整除关系 if (elements[j] % elements[i] == 0) { edges.push_back(make_pair(elements[i], elements[j])); } } } // 按字典顺序排序边 sort(edges.begin(), edges.end()); // 输出边 for (vector<pair<int, int> >::const_iterator it = edges.begin(); it != edges.end(); ++it) { cout << it->first << " " << it->second << endl; } return 0; }

以下是将上述代码转换为C语言的结果: ```c #include<stdio.h> #include<stdlib.h> typedef struct pair { int first; int second; } Pair; int compare(const void *a, const void *b) { Pair *p1 = (Pair *) a; Pair *p2 = (Pair *) b; if (p1->first != p2->first) { return p1->first - p2->first; } else { return p1->second - p2->second; } } int main() { int n; scanf("%d", &n); // 输入集合 A 的元素个数 int *elements = (int *) malloc(sizeof(int) * n); for (int i = 0; i < n; i++) { scanf("%d", &elements[i]); // 输入集合 A 的元素 } Pair *edges = (Pair *) malloc(sizeof(Pair) * n * (n - 1) / 2); int count = 0; // 遍历集合 A 中的元素 for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // 判断是否满足整除关系 if (elements[j] % elements[i] == 0) { edges[count].first = elements[i]; edges[count].second = elements[j]; count++; } } } // 按字典顺序排序边 qsort(edges, count, sizeof(Pair), compare); // 输出边 for (int i = 0; i < count; i++) { printf("%d %d\n", edges[i].first, edges[i].second); } free(elements); free(edges); return 0; } ```

#include <assert.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <iostream> // Include CUDA runtime and CUFFT #include <cuda_runtime.h> #include <cufft.h> #include <ctime> using namespace std; // Helper functions for CUDA #include "device_launch_parameters.h" #define pi 3.1415926535 #define LENGTH 1048576 //signal sampling points int main() { cufftComplex* CompData = (cufftComplex*)malloc(LENGTH * sizeof(cufftComplex));//allocate memory for the data in host int i; for (i = 0; i < LENGTH; i++) { CompData[i].x = rand() % 1000; CompData[i].y = rand() % 1000; } clock_t start, finish; double duration; cufftComplex* d_fftData; cudaMalloc((void**)&d_fftData, LENGTH * sizeof(cufftComplex));// allocate memory for the data in device cudaMemcpy(d_fftData, CompData, LENGTH * sizeof(cufftComplex), cudaMemcpyHostToDevice);// copy data from host to device start = clock(); cufftHandle plan;// cuda library function handle cufftPlan1d(&plan, LENGTH, CUFFT_C2C, 1);//declaration cufftExecC2C(plan, (cufftComplex*)d_fftData, (cufftComplex*)d_fftData, CUFFT_FORWARD);//execute cudaDeviceSynchronize();//wait to be done finish = clock(); cudaMemcpy(CompData, d_fftData, LENGTH * sizeof(cufftComplex), cudaMemcpyDeviceToHost);// copy the result from device to host duration = (double)(finish - start) / (CLOCKS_PER_SEC); cout << "程序运行花费的时间为" << duration << "s" << endl; cufftDestroy(plan); free(CompData); cudaFree(d_fftData); }

这段代码使用了CUDA库来进行快速傅里叶变换(FFT)。它首先在主机上为数据分配内存,然后随机生成一些复数数据。然后,它在设备上为数据分配内存,并将数据从主机复制到设备。接着,它创建了一个CUFFT句柄,用于调用CUDA库中的FFT函数,执行FFT变换,并将结果从设备复制回主机。最后,它释放了内存并销毁了CUFFT句柄。程序输出了在计算FFT的过程中所花费的时间。

相关推荐

解释代码(#include<stdio.h> //标准输入输出的头文件 #include<string.h> //含字符串处理函数的头文件,是C语言中的预处理命令 #include<malloc.h> //程序中可能会使用该头文件中定义的函数、宏和定变量等 #include <stdlib.h> //编译预处理命令 #include<iostream> //输入输出流 using namespace std; //释放std命名空间中的变量名,函数名以及类型名 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 //运算过程中出现了上溢,即运算结果超出了运算变量所能存储的范围 typedef int Status; typedef int Boolean; //布尔逻辑体系的 typedef char TElemType; //定义顺序树类型 //图的邻接矩阵存储表示 #define MaxInt 32767 //表示极大值 #define MVNum 100 //最大顶点数 typedef char VerTexType;//假设顶点的数据类型为字符型 typedef int ArcType; //假设边的权值类型为整型 typedef struct { VerTexType vex[MVNum]; //顶点表 ArcType arcs[MVNum][MVNum]; //邻接矩阵 int vexnum,arcnum; //图的当前点数和边数 }AMGraph; struct { VerTexType Head;//边的始点 VerTexType Tail;//边的终点 ArcType lowcost;//边上的权值 }Edge[MVNum]; int LocateVex(AMGraph &G,VerTexType u) {//存在则返回u在顶点表中的下标;否则返回-1 int i; for(i=0;i<G.vexnum;++i) if(u==G.vex[i]) return i; //return -1; } //采用邻接矩阵表示法创建无向图 Status CreatUDN(AMGraph &G) //创建图 { printf("请输入顶点和边数:\n"); cin>>G.vexnum>>G.arcnum; //输入总顶点数,总边数 printf("请输入顶点:\n"); for(int i=0;i<G.vexnum;i++) //依次输入点的信息 cin>>G.vex[i]; for(int i=0;i<G.vexnum;i++) //初始化邻接矩阵,边的权值均置为极大值MaxInt { for(int j=0;j<G.vexnum;j++) G.arcs[i][j]=MaxInt; } for(int k=0;k<G.arcnum;k++) //构造邻接矩阵)

#include <stdio.h> #include<iostream> #include<stdlib.h> #include<stdio.h> #define MAXSIZE 20 using namespace std; struct BiTreeNode//二叉树结点定义 { BiTreeNode* LChild;//左孩子指针域 int data; BiTreeNode* RChild;//右孩子指针域 }; struct Stack//栈的定义 { int base;//栈底指针 int top;//栈顶指针 BiTreeNode BTNS[MAXSIZE];//二叉树结点数组 int stackSize;//栈可用的最大容量 }; void InitStack(Stack*& S)//初始化栈 { S = (Stack*)malloc(sizeof(Stack)); S->top = S->base = 0; S->stackSize = MAXSIZE; } bool StackEmpty(Stack*& S)//判断栈是否为空 { if (S->base == S->top) { return true; } else { return false; } } bool StackFull(Stack*& S)//判断栈是否已满 { if (S->top - S->base == S->stackSize) { //栈已满 return true; } else { //栈不满 return false; } } void Push(Stack*& S, BiTreeNode*& T)//元素入栈 { if (StackFull(S) == true) { //如果栈已满, 则直接返回 return; } S->BTNS[S->top].data = T->data; S->BTNS[S->top].LChild = T->LChild; S->BTNS[S->top].RChild = T->RChild; S->top++; } BiTreeNode* Pop(Stack*& S)//元素出栈 { if (StackEmpty(S) == true) { return NULL; } S->top--; return &(S->BTNS[S->top]); } // void CreateBiTree(BiTreeNode*& T)//以先序序列创建二叉树 { char ch; cin >> ch; if (ch != '#') { T = (BiTreeNode*)malloc(sizeof(BiTreeNode)); T->data = ch; CreateBiTree(T->LChild); CreateBiTree(T->RChild); } else { T = NULL; } } void InOrderTraverse(Stack*& S, BiTreeNode*& T)//中序遍历二叉树的非递归算法(※) { InitStack(S);//初始化栈 BiTreeNode* p = T; BiTreeNode* q; while (p || !StackEmpty(S)) { if (p) { Push(S, p); p = p->LChild; } else { q = Pop(S);//出栈元素指针保存在q中 putchar(q->data); cout << " "; p = q->RChild; } } } int main() { Stack* S; BiTreeNode* T; CreateBiTree(T); InOrderTraverse(S, T); return 0; }请帮我把代码优化一下

最新推荐

recommend-type

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。