nn.L1Loss()
时间: 2024-03-11 21:34:43 浏览: 122
nn.L1Loss() is a loss function in PyTorch that computes the mean absolute error between the predicted and actual values of a tensor. It is also known as the mean absolute deviation (MAD) loss. This loss function is commonly used in regression problems where the goal is to predict a continuous value. The L1 loss function is less sensitive to outliers than the L2 loss function, as it takes the absolute value of the difference between the predicted and actual values rather than the square.
相关问题
torch.nn.L1Loss
`torch.nn.L1Loss` 是 PyTorch 中的一个损失函数,用于计算预测值和目标值之间的 L1 范数损失。L1 范数损失是指预测值与目标值之差的绝对值之和,也被称为平均绝对误差(MAE)。具体地,对于两个张量 $x$ 和 $y$,其 L1 范数损失为:
$$
L_1(x, y) = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|
$$
其中,$n$ 是张量的元素个数。`torch.nn.L1Loss` 的输入和输出都是张量,可以用于回归问题的损失计算。
nn.L1Loss的输出范围
nn.L1Loss是一个用于计算输入张量和目标张量之间的平均绝对误差(MAE)的损失函数。它的输出范围是非负实数。具体来说,对于形状为(batch_size,*)的输入张量和相应的目标张量,nn.L1Loss的输出为一个标量,表示两个张量之间的平均绝对误差。通常情况下,这个值越小,表示模型的性能越好。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)