torch.nn.MSELoss
时间: 2023-10-21 14:24:10 浏览: 115
基于torch.nn的回归、二分类、多分类任务代码
torch.nn.MSELoss是一个PyTorch库中的类,用于计算均方误差损失函数。通过比较两个输入参数的差异并计算其平方的平均值,来衡量模型预测值和真实值之间的距离。在定义类的对象时不需要传入任何参数,但在使用实例时需要输入两个维度相同的参数进行计算。举例如下:
```python
import torch as t
loss_f = t.nn.MSELoss()
x = t.randn(100, 100)
y = t.randn(100, 100)
loss = loss_f(x, y)
print(loss)
```
这个例子中,我们创建了一个MSELoss类的对象loss_f,然后生成了两个100x100的随机张量x和y。接下来,我们使用loss_f计算了x和y之间的均方误差损失值,并将结果存储在变量loss中进行打印。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [pytorch.backward()](https://download.csdn.net/download/weixin_38505158/14034983)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [PyTorch 笔记(17)— torch.nn 包中常用的损失函数(MSELoss 均方误差、L1Loss 平均绝对误差、Cross...](https://blog.csdn.net/wohu1104/article/details/107677629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文